MakeItFrom.com
Menu (ESC)

EN 1.4588 Stainless Steel vs. EN 1.4501 Stainless Steel

Both EN 1.4588 stainless steel and EN 1.4501 stainless steel are iron alloys. Both are furnished in the solution annealed (AT) condition. They have 78% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.4588 stainless steel and the bottom bar is EN 1.4501 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
250
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 34
27
Fatigue Strength, MPa 190
430
Impact Strength: V-Notched Charpy, J 67
90
Poisson's Ratio 0.28
0.27
Shear Modulus, GPa 80
80
Tensile Strength: Ultimate (UTS), MPa 540
830
Tensile Strength: Yield (Proof), MPa 240
600

Thermal Properties

Latent Heat of Fusion, J/g 300
300
Maximum Temperature: Corrosion, °C 420
450
Maximum Temperature: Mechanical, °C 1100
1100
Melting Completion (Liquidus), °C 1450
1460
Melting Onset (Solidus), °C 1410
1410
Specific Heat Capacity, J/kg-K 460
470
Thermal Conductivity, W/m-K 15
15
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 33
22
Density, g/cm3 8.1
7.9
Embodied Carbon, kg CO2/kg material 6.2
4.1
Embodied Energy, MJ/kg 84
57
Embodied Water, L/kg 200
180

Common Calculations

PREN (Pitting Resistance) 44
42
Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
210
Resilience: Unit (Modulus of Resilience), kJ/m3 140
870
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 18
29
Strength to Weight: Bending, points 18
25
Thermal Diffusivity, mm2/s 4.0
4.0
Thermal Shock Resistance, points 11
22

Alloy Composition

Carbon (C), % 0 to 0.020
0 to 0.030
Chromium (Cr), % 19 to 21
24 to 26
Copper (Cu), % 0.5 to 1.5
0.5 to 1.0
Iron (Fe), % 41.2 to 50.4
57.6 to 65.8
Manganese (Mn), % 0 to 2.0
0 to 1.0
Molybdenum (Mo), % 6.0 to 7.0
3.0 to 4.0
Nickel (Ni), % 24 to 26
6.0 to 8.0
Nitrogen (N), % 0.1 to 0.25
0.2 to 0.3
Phosphorus (P), % 0 to 0.035
0 to 0.035
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.020
0 to 0.015
Tungsten (W), % 0
0.5 to 1.0