MakeItFrom.com
Menu (ESC)

EN 1.4594 Stainless Steel vs. 2195 Aluminum

EN 1.4594 stainless steel belongs to the iron alloys classification, while 2195 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4594 stainless steel and the bottom bar is 2195 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
69
Elongation at Break, % 11 to 17
9.3
Fatigue Strength, MPa 490 to 620
190
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
26
Shear Strength, MPa 620 to 700
350
Tensile Strength: Ultimate (UTS), MPa 1020 to 1170
590
Tensile Strength: Yield (Proof), MPa 810 to 1140
560

Thermal Properties

Latent Heat of Fusion, J/g 280
390
Maximum Temperature: Mechanical, °C 820
210
Melting Completion (Liquidus), °C 1450
660
Melting Onset (Solidus), °C 1410
550
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 16
130
Thermal Expansion, µm/m-K 11
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
34
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
100

Otherwise Unclassified Properties

Base Metal Price, % relative 15
31
Density, g/cm3 7.9
3.0
Embodied Carbon, kg CO2/kg material 3.2
8.6
Embodied Energy, MJ/kg 45
160
Embodied Water, L/kg 130
1470

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 190
54
Resilience: Unit (Modulus of Resilience), kJ/m3 1660 to 3320
2290
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
46
Strength to Weight: Axial, points 36 to 41
55
Strength to Weight: Bending, points 29 to 31
53
Thermal Diffusivity, mm2/s 4.4
49
Thermal Shock Resistance, points 34 to 39
26

Alloy Composition

Aluminum (Al), % 0
91.9 to 94.9
Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 13 to 15
0
Copper (Cu), % 1.2 to 2.0
3.7 to 4.3
Iron (Fe), % 72.6 to 79.5
0 to 0.15
Lithium (Li), % 0
0.8 to 1.2
Magnesium (Mg), % 0
0.25 to 0.8
Manganese (Mn), % 0 to 1.0
0 to 0.25
Molybdenum (Mo), % 1.2 to 2.0
0
Nickel (Ni), % 5.0 to 6.0
0
Niobium (Nb), % 0.15 to 0.6
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.7
0 to 0.12
Silver (Ag), % 0
0.25 to 0.6
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.25
Zirconium (Zr), % 0
0.080 to 0.16
Residuals, % 0
0 to 0.15