MakeItFrom.com
Menu (ESC)

EN 1.4594 Stainless Steel vs. ASTM A369 Grade FP92

Both EN 1.4594 stainless steel and ASTM A369 grade FP92 are iron alloys. They have 87% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.4594 stainless steel and the bottom bar is ASTM A369 grade FP92.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 11 to 17
19
Fatigue Strength, MPa 490 to 620
330
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
76
Shear Strength, MPa 620 to 700
440
Tensile Strength: Ultimate (UTS), MPa 1020 to 1170
710
Tensile Strength: Yield (Proof), MPa 810 to 1140
490

Thermal Properties

Latent Heat of Fusion, J/g 280
260
Maximum Temperature: Mechanical, °C 820
590
Melting Completion (Liquidus), °C 1450
1490
Melting Onset (Solidus), °C 1410
1450
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 16
26
Thermal Expansion, µm/m-K 11
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
9.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
10

Otherwise Unclassified Properties

Base Metal Price, % relative 15
11
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 3.2
2.8
Embodied Energy, MJ/kg 45
40
Embodied Water, L/kg 130
89

Common Calculations

PREN (Pitting Resistance) 19
14
Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 190
120
Resilience: Unit (Modulus of Resilience), kJ/m3 1660 to 3320
620
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 36 to 41
25
Strength to Weight: Bending, points 29 to 31
22
Thermal Diffusivity, mm2/s 4.4
6.9
Thermal Shock Resistance, points 34 to 39
19

Alloy Composition

Aluminum (Al), % 0
0 to 0.020
Boron (B), % 0
0.0010 to 0.0060
Carbon (C), % 0 to 0.070
0.070 to 0.13
Chromium (Cr), % 13 to 15
8.5 to 9.5
Copper (Cu), % 1.2 to 2.0
0
Iron (Fe), % 72.6 to 79.5
85.8 to 89.1
Manganese (Mn), % 0 to 1.0
0.3 to 0.6
Molybdenum (Mo), % 1.2 to 2.0
0.3 to 0.6
Nickel (Ni), % 5.0 to 6.0
0 to 0.4
Niobium (Nb), % 0.15 to 0.6
0.040 to 0.090
Nitrogen (N), % 0
0.030 to 0.070
Phosphorus (P), % 0 to 0.040
0 to 0.020
Silicon (Si), % 0 to 0.7
0 to 0.5
Sulfur (S), % 0 to 0.015
0 to 0.010
Titanium (Ti), % 0
0 to 0.010
Tungsten (W), % 0
1.5 to 2.0
Vanadium (V), % 0
0.15 to 0.25
Zirconium (Zr), % 0
0 to 0.010