EN 1.4594 Stainless Steel vs. ASTM B817 Type I
EN 1.4594 stainless steel belongs to the iron alloys classification, while ASTM B817 type I belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.
For each property being compared, the top bar is EN 1.4594 stainless steel and the bottom bar is ASTM B817 type I.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 200 | |
100 |
Elongation at Break, % | 11 to 17 | |
4.0 to 13 |
Fatigue Strength, MPa | 490 to 620 | |
360 to 520 |
Poisson's Ratio | 0.28 | |
0.32 |
Shear Modulus, GPa | 76 | |
40 |
Tensile Strength: Ultimate (UTS), MPa | 1020 to 1170 | |
770 to 960 |
Tensile Strength: Yield (Proof), MPa | 810 to 1140 | |
700 to 860 |
Thermal Properties
Latent Heat of Fusion, J/g | 280 | |
410 |
Maximum Temperature: Mechanical, °C | 820 | |
340 |
Melting Completion (Liquidus), °C | 1450 | |
1600 |
Melting Onset (Solidus), °C | 1410 | |
1550 |
Specific Heat Capacity, J/kg-K | 470 | |
560 |
Thermal Conductivity, W/m-K | 16 | |
7.1 |
Thermal Expansion, µm/m-K | 11 | |
9.6 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 2.2 | |
1.0 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 2.5 | |
2.0 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 15 | |
36 |
Density, g/cm3 | 7.9 | |
4.4 |
Embodied Carbon, kg CO2/kg material | 3.2 | |
38 |
Embodied Energy, MJ/kg | 45 | |
610 |
Embodied Water, L/kg | 130 | |
200 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 110 to 190 | |
30 to 120 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 1660 to 3320 | |
2310 to 3540 |
Stiffness to Weight: Axial, points | 14 | |
13 |
Stiffness to Weight: Bending, points | 25 | |
35 |
Strength to Weight: Axial, points | 36 to 41 | |
48 to 60 |
Strength to Weight: Bending, points | 29 to 31 | |
42 to 49 |
Thermal Diffusivity, mm2/s | 4.4 | |
2.9 |
Thermal Shock Resistance, points | 34 to 39 | |
54 to 68 |
Alloy Composition
Aluminum (Al), % | 0 | |
5.5 to 6.8 |
Carbon (C), % | 0 to 0.070 | |
0 to 0.1 |
Chlorine (Cl), % | 0 | |
0 to 0.2 |
Chromium (Cr), % | 13 to 15 | |
0 |
Copper (Cu), % | 1.2 to 2.0 | |
0 |
Hydrogen (H), % | 0 | |
0 to 0.015 |
Iron (Fe), % | 72.6 to 79.5 | |
0 to 0.4 |
Manganese (Mn), % | 0 to 1.0 | |
0 |
Molybdenum (Mo), % | 1.2 to 2.0 | |
0 |
Nickel (Ni), % | 5.0 to 6.0 | |
0 |
Niobium (Nb), % | 0.15 to 0.6 | |
0 |
Nitrogen (N), % | 0 | |
0 to 0.040 |
Oxygen (O), % | 0 | |
0 to 0.3 |
Phosphorus (P), % | 0 to 0.040 | |
0 |
Silicon (Si), % | 0 to 0.7 | |
0 to 0.1 |
Sodium (Na), % | 0 | |
0 to 0.2 |
Sulfur (S), % | 0 to 0.015 | |
0 |
Titanium (Ti), % | 0 | |
87 to 91 |
Vanadium (V), % | 0 | |
3.5 to 4.5 |
Residuals, % | 0 | |
0 to 0.4 |