MakeItFrom.com
Menu (ESC)

EN 1.4594 Stainless Steel vs. EN-MC35110 Magnesium

EN 1.4594 stainless steel belongs to the iron alloys classification, while EN-MC35110 magnesium belongs to the magnesium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4594 stainless steel and the bottom bar is EN-MC35110 magnesium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
45
Elongation at Break, % 11 to 17
3.1
Fatigue Strength, MPa 490 to 620
110
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 76
18
Shear Strength, MPa 620 to 700
130
Tensile Strength: Ultimate (UTS), MPa 1020 to 1170
230
Tensile Strength: Yield (Proof), MPa 810 to 1140
150

Thermal Properties

Latent Heat of Fusion, J/g 280
330
Maximum Temperature: Mechanical, °C 820
140
Melting Completion (Liquidus), °C 1450
600
Melting Onset (Solidus), °C 1410
520
Specific Heat Capacity, J/kg-K 470
970
Thermal Conductivity, W/m-K 16
110
Thermal Expansion, µm/m-K 11
26

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
27
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
130

Otherwise Unclassified Properties

Base Metal Price, % relative 15
18
Density, g/cm3 7.9
1.9
Embodied Carbon, kg CO2/kg material 3.2
24
Embodied Energy, MJ/kg 45
170
Embodied Water, L/kg 130
940

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 190
6.3
Resilience: Unit (Modulus of Resilience), kJ/m3 1660 to 3320
260
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
63
Strength to Weight: Axial, points 36 to 41
34
Strength to Weight: Bending, points 29 to 31
44
Thermal Diffusivity, mm2/s 4.4
61
Thermal Shock Resistance, points 34 to 39
14

Alloy Composition

Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 13 to 15
0
Copper (Cu), % 1.2 to 2.0
0 to 0.030
Iron (Fe), % 72.6 to 79.5
0 to 0.010
Magnesium (Mg), % 0
92 to 95.4
Manganese (Mn), % 0 to 1.0
0 to 0.15
Molybdenum (Mo), % 1.2 to 2.0
0
Nickel (Ni), % 5.0 to 6.0
0 to 0.0050
Niobium (Nb), % 0.15 to 0.6
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.7
0 to 0.010
Sulfur (S), % 0 to 0.015
0
Unspecified Rare Earths, % 0
0.75 to 1.8
Zinc (Zn), % 0
3.5 to 5.0
Zirconium (Zr), % 0
0.4 to 1.0
Residuals, % 0
0 to 0.010