MakeItFrom.com
Menu (ESC)

EN 1.4594 Stainless Steel vs. Grade 12 Titanium

EN 1.4594 stainless steel belongs to the iron alloys classification, while grade 12 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4594 stainless steel and the bottom bar is grade 12 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 11 to 17
21
Fatigue Strength, MPa 490 to 620
280
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 76
39
Shear Strength, MPa 620 to 700
330
Tensile Strength: Ultimate (UTS), MPa 1020 to 1170
530
Tensile Strength: Yield (Proof), MPa 810 to 1140
410

Thermal Properties

Latent Heat of Fusion, J/g 280
420
Maximum Temperature: Mechanical, °C 820
320
Melting Completion (Liquidus), °C 1450
1660
Melting Onset (Solidus), °C 1410
1610
Specific Heat Capacity, J/kg-K 470
540
Thermal Conductivity, W/m-K 16
21
Thermal Expansion, µm/m-K 11
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
3.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
6.6

Otherwise Unclassified Properties

Base Metal Price, % relative 15
37
Density, g/cm3 7.9
4.5
Embodied Carbon, kg CO2/kg material 3.2
31
Embodied Energy, MJ/kg 45
500
Embodied Water, L/kg 130
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 190
110
Resilience: Unit (Modulus of Resilience), kJ/m3 1660 to 3320
770
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 36 to 41
32
Strength to Weight: Bending, points 29 to 31
32
Thermal Diffusivity, mm2/s 4.4
8.5
Thermal Shock Resistance, points 34 to 39
37

Alloy Composition

Carbon (C), % 0 to 0.070
0 to 0.080
Chromium (Cr), % 13 to 15
0
Copper (Cu), % 1.2 to 2.0
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 72.6 to 79.5
0 to 0.3
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 1.2 to 2.0
0.2 to 0.4
Nickel (Ni), % 5.0 to 6.0
0.6 to 0.9
Niobium (Nb), % 0.15 to 0.6
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.25
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.7
0
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
97.6 to 99.2
Residuals, % 0
0 to 0.4