EN 1.4594 Stainless Steel vs. Titanium 6-6-2
EN 1.4594 stainless steel belongs to the iron alloys classification, while titanium 6-6-2 belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.
For each property being compared, the top bar is EN 1.4594 stainless steel and the bottom bar is titanium 6-6-2.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 200 | |
120 |
Elongation at Break, % | 11 to 17 | |
6.7 to 9.0 |
Fatigue Strength, MPa | 490 to 620 | |
590 to 670 |
Poisson's Ratio | 0.28 | |
0.32 |
Shear Modulus, GPa | 76 | |
44 |
Shear Strength, MPa | 620 to 700 | |
670 to 800 |
Tensile Strength: Ultimate (UTS), MPa | 1020 to 1170 | |
1140 to 1370 |
Tensile Strength: Yield (Proof), MPa | 810 to 1140 | |
1040 to 1230 |
Thermal Properties
Latent Heat of Fusion, J/g | 280 | |
400 |
Maximum Temperature: Mechanical, °C | 820 | |
310 |
Melting Completion (Liquidus), °C | 1450 | |
1610 |
Melting Onset (Solidus), °C | 1410 | |
1560 |
Specific Heat Capacity, J/kg-K | 470 | |
540 |
Thermal Conductivity, W/m-K | 16 | |
5.5 |
Thermal Expansion, µm/m-K | 11 | |
9.4 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 2.2 | |
1.1 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 2.5 | |
2.1 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 15 | |
40 |
Density, g/cm3 | 7.9 | |
4.8 |
Embodied Carbon, kg CO2/kg material | 3.2 | |
29 |
Embodied Energy, MJ/kg | 45 | |
470 |
Embodied Water, L/kg | 130 | |
200 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 110 to 190 | |
89 to 99 |
Stiffness to Weight: Axial, points | 14 | |
13 |
Stiffness to Weight: Bending, points | 25 | |
34 |
Strength to Weight: Axial, points | 36 to 41 | |
66 to 79 |
Strength to Weight: Bending, points | 29 to 31 | |
50 to 57 |
Thermal Diffusivity, mm2/s | 4.4 | |
2.1 |
Thermal Shock Resistance, points | 34 to 39 | |
75 to 90 |
Alloy Composition
Aluminum (Al), % | 0 | |
5.0 to 6.0 |
Carbon (C), % | 0 to 0.070 | |
0 to 0.050 |
Chromium (Cr), % | 13 to 15 | |
0 |
Copper (Cu), % | 1.2 to 2.0 | |
0.35 to 1.0 |
Hydrogen (H), % | 0 | |
0 to 0.015 |
Iron (Fe), % | 72.6 to 79.5 | |
0.35 to 1.0 |
Manganese (Mn), % | 0 to 1.0 | |
0 |
Molybdenum (Mo), % | 1.2 to 2.0 | |
5.0 to 6.0 |
Nickel (Ni), % | 5.0 to 6.0 | |
0 |
Niobium (Nb), % | 0.15 to 0.6 | |
0 |
Nitrogen (N), % | 0 | |
0 to 0.040 |
Oxygen (O), % | 0 | |
0 to 0.2 |
Phosphorus (P), % | 0 to 0.040 | |
0 |
Silicon (Si), % | 0 to 0.7 | |
0 |
Sulfur (S), % | 0 to 0.015 | |
0 |
Tin (Sn), % | 0 | |
1.5 to 2.5 |
Titanium (Ti), % | 0 | |
82.8 to 87.8 |
Residuals, % | 0 | |
0 to 0.4 |