MakeItFrom.com
Menu (ESC)

EN 1.4594 Stainless Steel vs. C53800 Bronze

EN 1.4594 stainless steel belongs to the iron alloys classification, while C53800 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.4594 stainless steel and the bottom bar is C53800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 11 to 17
2.3
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
40
Shear Strength, MPa 620 to 700
470
Tensile Strength: Ultimate (UTS), MPa 1020 to 1170
830
Tensile Strength: Yield (Proof), MPa 810 to 1140
660

Thermal Properties

Latent Heat of Fusion, J/g 280
190
Maximum Temperature: Mechanical, °C 820
160
Melting Completion (Liquidus), °C 1450
980
Melting Onset (Solidus), °C 1410
800
Specific Heat Capacity, J/kg-K 470
360
Thermal Conductivity, W/m-K 16
61
Thermal Expansion, µm/m-K 11
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
9.3

Otherwise Unclassified Properties

Base Metal Price, % relative 15
37
Density, g/cm3 7.9
8.7
Embodied Carbon, kg CO2/kg material 3.2
3.9
Embodied Energy, MJ/kg 45
64
Embodied Water, L/kg 130
420

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 190
18
Resilience: Unit (Modulus of Resilience), kJ/m3 1660 to 3320
2020
Stiffness to Weight: Axial, points 14
6.8
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 36 to 41
26
Strength to Weight: Bending, points 29 to 31
22
Thermal Diffusivity, mm2/s 4.4
19
Thermal Shock Resistance, points 34 to 39
31

Alloy Composition

Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 13 to 15
0
Copper (Cu), % 1.2 to 2.0
85.1 to 86.5
Iron (Fe), % 72.6 to 79.5
0 to 0.030
Lead (Pb), % 0
0.4 to 0.6
Manganese (Mn), % 0 to 1.0
0 to 0.060
Molybdenum (Mo), % 1.2 to 2.0
0
Nickel (Ni), % 5.0 to 6.0
0 to 0.030
Niobium (Nb), % 0.15 to 0.6
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.7
0
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
13.1 to 13.9
Zinc (Zn), % 0
0 to 0.12
Residuals, % 0
0 to 0.2