MakeItFrom.com
Menu (ESC)

EN 1.4594 Stainless Steel vs. C69710 Brass

EN 1.4594 stainless steel belongs to the iron alloys classification, while C69710 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.4594 stainless steel and the bottom bar is C69710 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 11 to 17
25
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 76
41
Shear Strength, MPa 620 to 700
300
Tensile Strength: Ultimate (UTS), MPa 1020 to 1170
470
Tensile Strength: Yield (Proof), MPa 810 to 1140
230

Thermal Properties

Latent Heat of Fusion, J/g 280
240
Maximum Temperature: Mechanical, °C 820
160
Melting Completion (Liquidus), °C 1450
930
Melting Onset (Solidus), °C 1410
880
Specific Heat Capacity, J/kg-K 470
400
Thermal Conductivity, W/m-K 16
40
Thermal Expansion, µm/m-K 11
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 15
26
Density, g/cm3 7.9
8.3
Embodied Carbon, kg CO2/kg material 3.2
2.7
Embodied Energy, MJ/kg 45
44
Embodied Water, L/kg 130
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 190
99
Resilience: Unit (Modulus of Resilience), kJ/m3 1660 to 3320
250
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 36 to 41
16
Strength to Weight: Bending, points 29 to 31
16
Thermal Diffusivity, mm2/s 4.4
12
Thermal Shock Resistance, points 34 to 39
16

Alloy Composition

Arsenic (As), % 0
0.030 to 0.060
Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 13 to 15
0
Copper (Cu), % 1.2 to 2.0
75 to 80
Iron (Fe), % 72.6 to 79.5
0 to 0.2
Lead (Pb), % 0
0.5 to 1.5
Manganese (Mn), % 0 to 1.0
0 to 0.4
Molybdenum (Mo), % 1.2 to 2.0
0
Nickel (Ni), % 5.0 to 6.0
0
Niobium (Nb), % 0.15 to 0.6
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.7
2.5 to 3.5
Sulfur (S), % 0 to 0.015
0
Zinc (Zn), % 0
13.8 to 22
Residuals, % 0
0 to 0.5