MakeItFrom.com
Menu (ESC)

EN 1.4594 Stainless Steel vs. C87700 Bronze

EN 1.4594 stainless steel belongs to the iron alloys classification, while C87700 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4594 stainless steel and the bottom bar is C87700 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 11 to 17
3.6
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
42
Tensile Strength: Ultimate (UTS), MPa 1020 to 1170
300
Tensile Strength: Yield (Proof), MPa 810 to 1140
120

Thermal Properties

Latent Heat of Fusion, J/g 280
250
Maximum Temperature: Mechanical, °C 820
180
Melting Completion (Liquidus), °C 1450
980
Melting Onset (Solidus), °C 1410
900
Specific Heat Capacity, J/kg-K 470
400
Thermal Conductivity, W/m-K 16
120
Thermal Expansion, µm/m-K 11
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
45
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
48

Otherwise Unclassified Properties

Base Metal Price, % relative 15
29
Density, g/cm3 7.9
8.5
Embodied Carbon, kg CO2/kg material 3.2
2.7
Embodied Energy, MJ/kg 45
45
Embodied Water, L/kg 130
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 190
8.6
Resilience: Unit (Modulus of Resilience), kJ/m3 1660 to 3320
64
Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 36 to 41
9.8
Strength to Weight: Bending, points 29 to 31
12
Thermal Diffusivity, mm2/s 4.4
34
Thermal Shock Resistance, points 34 to 39
11

Alloy Composition

Antimony (Sb), % 0
0 to 0.1
Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 13 to 15
0
Copper (Cu), % 1.2 to 2.0
87.5 to 90.5
Iron (Fe), % 72.6 to 79.5
0 to 0.5
Lead (Pb), % 0
0 to 0.090
Manganese (Mn), % 0 to 1.0
0 to 0.8
Molybdenum (Mo), % 1.2 to 2.0
0
Nickel (Ni), % 5.0 to 6.0
0 to 0.25
Niobium (Nb), % 0.15 to 0.6
0
Phosphorus (P), % 0 to 0.040
0 to 0.15
Silicon (Si), % 0 to 0.7
2.5 to 3.5
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 2.0
Zinc (Zn), % 0
7.0 to 9.0
Residuals, % 0
0 to 0.8