MakeItFrom.com
Menu (ESC)

EN 1.4594 Stainless Steel vs. C92200 Bronze

EN 1.4594 stainless steel belongs to the iron alloys classification, while C92200 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.4594 stainless steel and the bottom bar is C92200 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 11 to 17
25
Fatigue Strength, MPa 490 to 620
76
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
41
Tensile Strength: Ultimate (UTS), MPa 1020 to 1170
280
Tensile Strength: Yield (Proof), MPa 810 to 1140
140

Thermal Properties

Latent Heat of Fusion, J/g 280
190
Maximum Temperature: Mechanical, °C 820
170
Melting Completion (Liquidus), °C 1450
990
Melting Onset (Solidus), °C 1410
830
Specific Heat Capacity, J/kg-K 470
370
Thermal Conductivity, W/m-K 16
70
Thermal Expansion, µm/m-K 11
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
14
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
14

Otherwise Unclassified Properties

Base Metal Price, % relative 15
32
Density, g/cm3 7.9
8.7
Embodied Carbon, kg CO2/kg material 3.2
3.2
Embodied Energy, MJ/kg 45
52
Embodied Water, L/kg 130
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 190
58
Resilience: Unit (Modulus of Resilience), kJ/m3 1660 to 3320
87
Stiffness to Weight: Axial, points 14
6.9
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 36 to 41
8.9
Strength to Weight: Bending, points 29 to 31
11
Thermal Diffusivity, mm2/s 4.4
21
Thermal Shock Resistance, points 34 to 39
9.9

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 13 to 15
0
Copper (Cu), % 1.2 to 2.0
86 to 90
Iron (Fe), % 72.6 to 79.5
0 to 0.25
Lead (Pb), % 0
1.0 to 2.0
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 1.2 to 2.0
0
Nickel (Ni), % 5.0 to 6.0
0 to 1.0
Niobium (Nb), % 0.15 to 0.6
0
Phosphorus (P), % 0 to 0.040
0 to 1.5
Silicon (Si), % 0 to 0.7
0 to 0.0050
Sulfur (S), % 0 to 0.015
0 to 0.050
Tin (Sn), % 0
5.5 to 6.5
Zinc (Zn), % 0
3.0 to 5.0
Residuals, % 0
0 to 0.7