MakeItFrom.com
Menu (ESC)

EN 1.4594 Stainless Steel vs. C93200 Bronze

EN 1.4594 stainless steel belongs to the iron alloys classification, while C93200 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.4594 stainless steel and the bottom bar is C93200 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 11 to 17
20
Fatigue Strength, MPa 490 to 620
110
Poisson's Ratio 0.28
0.35
Shear Modulus, GPa 76
38
Tensile Strength: Ultimate (UTS), MPa 1020 to 1170
240
Tensile Strength: Yield (Proof), MPa 810 to 1140
130

Thermal Properties

Latent Heat of Fusion, J/g 280
180
Maximum Temperature: Mechanical, °C 820
160
Melting Completion (Liquidus), °C 1450
980
Melting Onset (Solidus), °C 1410
850
Specific Heat Capacity, J/kg-K 470
360
Thermal Conductivity, W/m-K 16
59
Thermal Expansion, µm/m-K 11
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
12
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
12

Otherwise Unclassified Properties

Base Metal Price, % relative 15
32
Density, g/cm3 7.9
8.8
Embodied Carbon, kg CO2/kg material 3.2
3.2
Embodied Energy, MJ/kg 45
52
Embodied Water, L/kg 130
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 190
40
Resilience: Unit (Modulus of Resilience), kJ/m3 1660 to 3320
76
Stiffness to Weight: Axial, points 14
6.5
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 36 to 41
7.5
Strength to Weight: Bending, points 29 to 31
9.7
Thermal Diffusivity, mm2/s 4.4
18
Thermal Shock Resistance, points 34 to 39
9.3

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.35
Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 13 to 15
0
Copper (Cu), % 1.2 to 2.0
81 to 85
Iron (Fe), % 72.6 to 79.5
0 to 0.2
Lead (Pb), % 0
6.0 to 8.0
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 1.2 to 2.0
0
Nickel (Ni), % 5.0 to 6.0
0 to 1.0
Niobium (Nb), % 0.15 to 0.6
0
Phosphorus (P), % 0 to 0.040
0 to 1.5
Silicon (Si), % 0 to 0.7
0 to 0.0050
Sulfur (S), % 0 to 0.015
0 to 0.080
Tin (Sn), % 0
6.3 to 7.5
Zinc (Zn), % 0
2.0 to 4.0
Residuals, % 0
0 to 1.0