MakeItFrom.com
Menu (ESC)

EN 1.4594 Stainless Steel vs. C95300 Bronze

EN 1.4594 stainless steel belongs to the iron alloys classification, while C95300 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4594 stainless steel and the bottom bar is C95300 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 11 to 17
14 to 25
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
42
Tensile Strength: Ultimate (UTS), MPa 1020 to 1170
520 to 610
Tensile Strength: Yield (Proof), MPa 810 to 1140
190 to 310

Thermal Properties

Latent Heat of Fusion, J/g 280
230
Maximum Temperature: Mechanical, °C 820
220
Melting Completion (Liquidus), °C 1450
1050
Melting Onset (Solidus), °C 1410
1040
Specific Heat Capacity, J/kg-K 470
440
Thermal Conductivity, W/m-K 16
63
Thermal Expansion, µm/m-K 11
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
13
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
14

Otherwise Unclassified Properties

Base Metal Price, % relative 15
28
Density, g/cm3 7.9
8.3
Embodied Carbon, kg CO2/kg material 3.2
3.1
Embodied Energy, MJ/kg 45
52
Embodied Water, L/kg 130
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 190
73 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 1660 to 3320
170 to 420
Stiffness to Weight: Axial, points 14
7.5
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 36 to 41
17 to 21
Strength to Weight: Bending, points 29 to 31
17 to 19
Thermal Diffusivity, mm2/s 4.4
17
Thermal Shock Resistance, points 34 to 39
19 to 22

Alloy Composition

Aluminum (Al), % 0
9.0 to 11
Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 13 to 15
0
Copper (Cu), % 1.2 to 2.0
86.5 to 90.2
Iron (Fe), % 72.6 to 79.5
0.8 to 1.5
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 1.2 to 2.0
0
Nickel (Ni), % 5.0 to 6.0
0
Niobium (Nb), % 0.15 to 0.6
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.7
0
Sulfur (S), % 0 to 0.015
0
Residuals, % 0
0 to 1.0