MakeItFrom.com
Menu (ESC)

EN 1.4596 Stainless Steel vs. EN AC-48100 Aluminum

EN 1.4596 stainless steel belongs to the iron alloys classification, while EN AC-48100 aluminum belongs to the aluminum alloys. There are 20 material properties with values for both materials. Properties with values for just one material (12, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4596 stainless steel and the bottom bar is EN AC-48100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
76
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
29
Tensile Strength: Ultimate (UTS), MPa 1030 to 1600
240 to 330

Thermal Properties

Latent Heat of Fusion, J/g 280
640
Maximum Temperature: Mechanical, °C 790
170
Melting Completion (Liquidus), °C 1450
580
Melting Onset (Solidus), °C 1410
470
Specific Heat Capacity, J/kg-K 470
880
Thermal Expansion, µm/m-K 11
20

Otherwise Unclassified Properties

Base Metal Price, % relative 15
11
Density, g/cm3 7.9
2.8
Embodied Carbon, kg CO2/kg material 3.5
7.3
Embodied Energy, MJ/kg 48
130
Embodied Water, L/kg 130
940

Common Calculations

Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
51
Strength to Weight: Axial, points 36 to 56
24 to 33
Strength to Weight: Bending, points 29 to 39
31 to 38
Thermal Shock Resistance, points 35 to 54
11 to 16

Alloy Composition

Aluminum (Al), % 0.8 to 1.1
72.1 to 79.8
Carbon (C), % 0 to 0.015
0
Chromium (Cr), % 11.5 to 12.5
0
Copper (Cu), % 0
4.0 to 5.0
Iron (Fe), % 73.4 to 76.4
0 to 1.3
Magnesium (Mg), % 0
0.25 to 0.65
Manganese (Mn), % 0 to 0.1
0 to 0.5
Molybdenum (Mo), % 1.9 to 2.2
0
Nickel (Ni), % 9.2 to 10.2
0 to 0.3
Nitrogen (N), % 0 to 0.020
0
Phosphorus (P), % 0 to 0.010
0
Silicon (Si), % 0 to 0.1
16 to 18
Sulfur (S), % 0 to 0.0050
0
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0.28 to 0.4
0 to 0.25
Zinc (Zn), % 0
0 to 1.5
Residuals, % 0
0 to 0.25