MakeItFrom.com
Menu (ESC)

EN 1.4655 Stainless Steel vs. Grade 23 Titanium

EN 1.4655 stainless steel belongs to the iron alloys classification, while grade 23 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4655 stainless steel and the bottom bar is grade 23 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 23 to 25
6.7 to 11
Fatigue Strength, MPa 320
470 to 500
Poisson's Ratio 0.27
0.32
Shear Modulus, GPa 78
40
Shear Strength, MPa 460
540 to 570
Tensile Strength: Ultimate (UTS), MPa 720 to 730
930 to 940
Tensile Strength: Yield (Proof), MPa 450 to 480
850 to 870

Thermal Properties

Latent Heat of Fusion, J/g 290
410
Maximum Temperature: Mechanical, °C 1050
340
Melting Completion (Liquidus), °C 1420
1610
Melting Onset (Solidus), °C 1370
1560
Specific Heat Capacity, J/kg-K 480
560
Thermal Conductivity, W/m-K 15
7.1
Thermal Expansion, µm/m-K 13
9.4

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 15
36
Density, g/cm3 7.7
4.4
Embodied Carbon, kg CO2/kg material 2.9
38
Embodied Energy, MJ/kg 41
610
Embodied Water, L/kg 160
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150 to 160
61 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 510 to 580
3430 to 3560
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 26
58 to 59
Strength to Weight: Bending, points 23
48
Thermal Diffusivity, mm2/s 4.0
2.9
Thermal Shock Resistance, points 20
67 to 68

Alloy Composition

Aluminum (Al), % 0
5.5 to 6.5
Carbon (C), % 0 to 0.030
0 to 0.080
Chromium (Cr), % 22 to 24
0
Copper (Cu), % 1.0 to 3.0
0
Hydrogen (H), % 0
0 to 0.013
Iron (Fe), % 63.6 to 73.4
0 to 0.25
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 0.1 to 0.6
0
Nickel (Ni), % 3.5 to 5.5
0
Nitrogen (N), % 0.050 to 0.2
0 to 0.030
Oxygen (O), % 0
0 to 0.13
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
88.1 to 91
Vanadium (V), % 0
3.5 to 4.5
Residuals, % 0
0 to 0.4