MakeItFrom.com
Menu (ESC)

EN 1.4724 Stainless Steel vs. S32550 Stainless Steel

Both EN 1.4724 stainless steel and S32550 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 76% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.4724 stainless steel and the bottom bar is S32550 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
260
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 16
21
Fatigue Strength, MPa 170
400
Poisson's Ratio 0.28
0.27
Shear Modulus, GPa 75
80
Shear Strength, MPa 340
540
Tensile Strength: Ultimate (UTS), MPa 550
860
Tensile Strength: Yield (Proof), MPa 280
620

Thermal Properties

Latent Heat of Fusion, J/g 290
300
Maximum Temperature: Corrosion, °C 390
450
Maximum Temperature: Mechanical, °C 850
1100
Melting Completion (Liquidus), °C 1430
1440
Melting Onset (Solidus), °C 1390
1390
Specific Heat Capacity, J/kg-K 490
480
Thermal Conductivity, W/m-K 21
16
Thermal Expansion, µm/m-K 11
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
20
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 2.0
3.8
Embodied Energy, MJ/kg 28
53
Embodied Water, L/kg 110
180

Common Calculations

PREN (Pitting Resistance) 13
40
Resilience: Ultimate (Unit Rupture Work), MJ/m3 73
160
Resilience: Unit (Modulus of Resilience), kJ/m3 210
940
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 20
31
Strength to Weight: Bending, points 19
26
Thermal Diffusivity, mm2/s 5.6
4.4
Thermal Shock Resistance, points 19
23

Alloy Composition

Aluminum (Al), % 0.7 to 1.2
0
Carbon (C), % 0 to 0.12
0 to 0.040
Chromium (Cr), % 12 to 14
24 to 27
Copper (Cu), % 0
1.5 to 2.5
Iron (Fe), % 82.2 to 86.6
57.2 to 67
Manganese (Mn), % 0 to 1.0
0 to 1.5
Molybdenum (Mo), % 0
2.9 to 3.9
Nickel (Ni), % 0
4.5 to 6.5
Nitrogen (N), % 0
0.1 to 0.25
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0.7 to 1.4
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.030