MakeItFrom.com
Menu (ESC)

EN 1.4724 Stainless Steel vs. S44535 Stainless Steel

Both EN 1.4724 stainless steel and S44535 stainless steel are iron alloys. Both are furnished in the annealed condition. They have a moderately high 90% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.4724 stainless steel and the bottom bar is S44535 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
170
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 16
28
Fatigue Strength, MPa 170
210
Poisson's Ratio 0.28
0.27
Shear Modulus, GPa 75
78
Shear Strength, MPa 340
290
Tensile Strength: Ultimate (UTS), MPa 550
450
Tensile Strength: Yield (Proof), MPa 280
290

Thermal Properties

Latent Heat of Fusion, J/g 290
290
Maximum Temperature: Corrosion, °C 390
450
Maximum Temperature: Mechanical, °C 850
1000
Melting Completion (Liquidus), °C 1430
1430
Melting Onset (Solidus), °C 1390
1390
Specific Heat Capacity, J/kg-K 490
480
Thermal Conductivity, W/m-K 21
21
Thermal Expansion, µm/m-K 11
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
3.1

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
11
Density, g/cm3 7.7
7.7
Embodied Carbon, kg CO2/kg material 2.0
2.4
Embodied Energy, MJ/kg 28
34
Embodied Water, L/kg 110
140

Common Calculations

PREN (Pitting Resistance) 13
22
Resilience: Ultimate (Unit Rupture Work), MJ/m3 73
110
Resilience: Unit (Modulus of Resilience), kJ/m3 210
200
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 20
16
Strength to Weight: Bending, points 19
17
Thermal Diffusivity, mm2/s 5.6
5.6
Thermal Shock Resistance, points 19
15

Alloy Composition

Aluminum (Al), % 0.7 to 1.2
0 to 0.5
Carbon (C), % 0 to 0.12
0 to 0.030
Chromium (Cr), % 12 to 14
20 to 24
Copper (Cu), % 0
0 to 0.5
Iron (Fe), % 82.2 to 86.6
73.2 to 79.6
Lanthanum (La), % 0
0.040 to 0.2
Manganese (Mn), % 0 to 1.0
0.3 to 0.8
Phosphorus (P), % 0 to 0.040
0 to 0.050
Silicon (Si), % 0.7 to 1.4
0 to 0.5
Sulfur (S), % 0 to 0.015
0 to 0.020
Titanium (Ti), % 0
0.030 to 0.2