MakeItFrom.com
Menu (ESC)

EN 1.4724 Stainless Steel vs. S44660 Stainless Steel

Both EN 1.4724 stainless steel and S44660 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 80% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.4724 stainless steel and the bottom bar is S44660 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
210
Elastic (Young's, Tensile) Modulus, GPa 190
210
Elongation at Break, % 16
20
Fatigue Strength, MPa 170
330
Poisson's Ratio 0.28
0.27
Shear Modulus, GPa 75
81
Shear Strength, MPa 340
410
Tensile Strength: Ultimate (UTS), MPa 550
660
Tensile Strength: Yield (Proof), MPa 280
510

Thermal Properties

Latent Heat of Fusion, J/g 290
300
Maximum Temperature: Corrosion, °C 390
640
Maximum Temperature: Mechanical, °C 850
1100
Melting Completion (Liquidus), °C 1430
1460
Melting Onset (Solidus), °C 1390
1410
Specific Heat Capacity, J/kg-K 490
480
Thermal Conductivity, W/m-K 21
17
Thermal Expansion, µm/m-K 11
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
21
Density, g/cm3 7.7
7.7
Embodied Carbon, kg CO2/kg material 2.0
4.3
Embodied Energy, MJ/kg 28
61
Embodied Water, L/kg 110
180

Common Calculations

PREN (Pitting Resistance) 13
38
Resilience: Ultimate (Unit Rupture Work), MJ/m3 73
120
Resilience: Unit (Modulus of Resilience), kJ/m3 210
640
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 20
24
Strength to Weight: Bending, points 19
22
Thermal Diffusivity, mm2/s 5.6
4.5
Thermal Shock Resistance, points 19
21

Alloy Composition

Aluminum (Al), % 0.7 to 1.2
0
Carbon (C), % 0 to 0.12
0 to 0.030
Chromium (Cr), % 12 to 14
25 to 28
Iron (Fe), % 82.2 to 86.6
60.4 to 71
Manganese (Mn), % 0 to 1.0
0 to 1.0
Molybdenum (Mo), % 0
3.0 to 4.0
Nickel (Ni), % 0
1.0 to 3.5
Niobium (Nb), % 0
0.2 to 1.0
Nitrogen (N), % 0
0 to 0.040
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0.7 to 1.4
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.030
Titanium (Ti), % 0
0.2 to 1.0