MakeItFrom.com
Menu (ESC)

EN 1.4806 Stainless Steel vs. C90400 Bronze

EN 1.4806 stainless steel belongs to the iron alloys classification, while C90400 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.4806 stainless steel and the bottom bar is C90400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 140
77
Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 6.8
24
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 75
41
Tensile Strength: Ultimate (UTS), MPa 470
310
Tensile Strength: Yield (Proof), MPa 250
180

Thermal Properties

Latent Heat of Fusion, J/g 320
190
Maximum Temperature: Mechanical, °C 1000
170
Melting Completion (Liquidus), °C 1380
990
Melting Onset (Solidus), °C 1340
850
Specific Heat Capacity, J/kg-K 480
370
Thermal Conductivity, W/m-K 12
75
Thermal Expansion, µm/m-K 15
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
12
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
12

Otherwise Unclassified Properties

Base Metal Price, % relative 31
34
Density, g/cm3 8.0
8.7
Embodied Carbon, kg CO2/kg material 5.4
3.5
Embodied Energy, MJ/kg 76
56
Embodied Water, L/kg 190
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 27
65
Resilience: Unit (Modulus of Resilience), kJ/m3 160
150
Stiffness to Weight: Axial, points 14
7.0
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 16
10
Strength to Weight: Bending, points 17
12
Thermal Diffusivity, mm2/s 3.1
23
Thermal Shock Resistance, points 11
11

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.020
Boron (B), % 0
0 to 0.1
Carbon (C), % 0.3 to 0.5
0
Chromium (Cr), % 16 to 18
0
Copper (Cu), % 0
86 to 89
Iron (Fe), % 40.4 to 48.7
0 to 0.4
Lead (Pb), % 0
0 to 0.090
Manganese (Mn), % 0 to 2.0
0 to 0.010
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 34 to 36
0 to 1.0
Phosphorus (P), % 0 to 0.040
0 to 0.050
Silicon (Si), % 1.0 to 2.5
0 to 0.0050
Sulfur (S), % 0 to 0.030
0.1 to 0.65
Tin (Sn), % 0
7.5 to 8.5
Zinc (Zn), % 0
1.0 to 5.0
Zirconium (Zr), % 0
0 to 0.1
Residuals, % 0
0 to 0.7