MakeItFrom.com
Menu (ESC)

EN 1.4832 Stainless Steel vs. S44536 Stainless Steel

Both EN 1.4832 stainless steel and S44536 stainless steel are iron alloys. They have 84% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.4832 stainless steel and the bottom bar is S44536 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
170
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 11
22
Fatigue Strength, MPa 140
190
Poisson's Ratio 0.28
0.27
Shear Modulus, GPa 77
78
Tensile Strength: Ultimate (UTS), MPa 510
460
Tensile Strength: Yield (Proof), MPa 260
280

Thermal Properties

Latent Heat of Fusion, J/g 310
290
Maximum Temperature: Corrosion, °C 420
560
Maximum Temperature: Mechanical, °C 950
990
Melting Completion (Liquidus), °C 1400
1440
Melting Onset (Solidus), °C 1360
1390
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 14
21
Thermal Expansion, µm/m-K 16
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 19
13
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 3.6
2.8
Embodied Energy, MJ/kg 51
41
Embodied Water, L/kg 160
140

Common Calculations

PREN (Pitting Resistance) 21
22
Resilience: Ultimate (Unit Rupture Work), MJ/m3 48
89
Resilience: Unit (Modulus of Resilience), kJ/m3 170
200
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 18
17
Strength to Weight: Bending, points 18
17
Thermal Diffusivity, mm2/s 3.7
5.6
Thermal Shock Resistance, points 12
16

Alloy Composition

Carbon (C), % 0.15 to 0.35
0 to 0.015
Chromium (Cr), % 19 to 21
20 to 23
Iron (Fe), % 58.6 to 67.4
72.8 to 80
Manganese (Mn), % 0 to 2.0
0 to 1.0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 13 to 15
0 to 0.5
Niobium (Nb), % 0
0.050 to 0.8
Nitrogen (N), % 0
0 to 0.015
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0.5 to 2.5
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030
Titanium (Ti), % 0
0 to 0.8