MakeItFrom.com
Menu (ESC)

EN 1.4852 Stainless Steel vs. S82013 Stainless Steel

Both EN 1.4852 stainless steel and S82013 stainless steel are iron alloys. They have 59% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.4852 stainless steel and the bottom bar is S82013 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 140
260
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 4.6
34
Fatigue Strength, MPa 120
400
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
78
Tensile Strength: Ultimate (UTS), MPa 490
710
Tensile Strength: Yield (Proof), MPa 250
500

Thermal Properties

Latent Heat of Fusion, J/g 330
290
Maximum Temperature: Corrosion, °C 620
430
Maximum Temperature: Mechanical, °C 1100
970
Melting Completion (Liquidus), °C 1380
1420
Melting Onset (Solidus), °C 1340
1380
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 13
15
Thermal Expansion, µm/m-K 16
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 41
11
Density, g/cm3 7.9
7.7
Embodied Carbon, kg CO2/kg material 6.9
2.4
Embodied Energy, MJ/kg 100
34
Embodied Water, L/kg 220
140

Common Calculations

PREN (Pitting Resistance) 26
25
Resilience: Ultimate (Unit Rupture Work), MJ/m3 19
220
Resilience: Unit (Modulus of Resilience), kJ/m3 160
640
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 17
26
Strength to Weight: Bending, points 18
23
Thermal Diffusivity, mm2/s 3.4
4.0
Thermal Shock Resistance, points 11
20

Alloy Composition

Carbon (C), % 0.3 to 0.5
0 to 0.060
Chromium (Cr), % 24 to 27
19.5 to 22
Copper (Cu), % 0
0.2 to 1.2
Iron (Fe), % 29.6 to 40.9
70.5 to 77.1
Manganese (Mn), % 0 to 2.0
2.5 to 3.5
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 33 to 36
0.5 to 1.5
Niobium (Nb), % 0.8 to 1.8
0
Nitrogen (N), % 0
0.2 to 0.3
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 1.0 to 2.5
0 to 0.9
Sulfur (S), % 0 to 0.030
0 to 0.030