MakeItFrom.com
Menu (ESC)

EN 1.4865 Stainless Steel vs. 7020 Aluminum

EN 1.4865 stainless steel belongs to the iron alloys classification, while 7020 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4865 stainless steel and the bottom bar is 7020 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 140
45 to 100
Elastic (Young's, Tensile) Modulus, GPa 200
70
Elongation at Break, % 6.8
8.4 to 14
Fatigue Strength, MPa 120
110 to 130
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
26
Tensile Strength: Ultimate (UTS), MPa 470
190 to 390
Tensile Strength: Yield (Proof), MPa 250
120 to 310

Thermal Properties

Latent Heat of Fusion, J/g 320
380
Maximum Temperature: Mechanical, °C 1020
210
Melting Completion (Liquidus), °C 1380
650
Melting Onset (Solidus), °C 1330
610
Specific Heat Capacity, J/kg-K 480
880
Thermal Conductivity, W/m-K 12
150
Thermal Expansion, µm/m-K 15
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
39
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
120

Otherwise Unclassified Properties

Base Metal Price, % relative 33
9.5
Density, g/cm3 8.0
2.9
Embodied Carbon, kg CO2/kg material 5.8
8.3
Embodied Energy, MJ/kg 81
150
Embodied Water, L/kg 200
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 27
23 to 46
Resilience: Unit (Modulus of Resilience), kJ/m3 160
110 to 690
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
47
Strength to Weight: Axial, points 16
18 to 37
Strength to Weight: Bending, points 17
25 to 41
Thermal Diffusivity, mm2/s 3.1
59
Thermal Shock Resistance, points 11
8.3 to 17

Alloy Composition

Aluminum (Al), % 0
91.2 to 94.8
Carbon (C), % 0.3 to 0.5
0
Chromium (Cr), % 18 to 21
0.1 to 0.35
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 34.4 to 44.7
0 to 0.4
Magnesium (Mg), % 0
1.0 to 1.4
Manganese (Mn), % 0 to 2.0
0.050 to 0.5
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 36 to 39
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 1.0 to 2.5
0 to 0.35
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
4.0 to 5.0
Zirconium (Zr), % 0
0.080 to 0.25
Residuals, % 0
0 to 0.15