MakeItFrom.com
Menu (ESC)

EN 1.4865 Stainless Steel vs. C68800 Brass

EN 1.4865 stainless steel belongs to the iron alloys classification, while C68800 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is EN 1.4865 stainless steel and the bottom bar is C68800 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 6.8
2.0 to 36
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 76
41
Tensile Strength: Ultimate (UTS), MPa 470
570 to 890
Tensile Strength: Yield (Proof), MPa 250
390 to 790

Thermal Properties

Latent Heat of Fusion, J/g 320
190
Maximum Temperature: Mechanical, °C 1020
160
Melting Completion (Liquidus), °C 1380
960
Melting Onset (Solidus), °C 1330
950
Specific Heat Capacity, J/kg-K 480
400
Thermal Conductivity, W/m-K 12
40
Thermal Expansion, µm/m-K 15
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
18
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
20

Otherwise Unclassified Properties

Base Metal Price, % relative 33
26
Density, g/cm3 8.0
8.2
Embodied Carbon, kg CO2/kg material 5.8
2.8
Embodied Energy, MJ/kg 81
48
Embodied Water, L/kg 200
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 27
16 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 160
710 to 2860
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 16
19 to 30
Strength to Weight: Bending, points 17
19 to 25
Thermal Diffusivity, mm2/s 3.1
12
Thermal Shock Resistance, points 11
19 to 30

Alloy Composition

Aluminum (Al), % 0
3.0 to 3.8
Carbon (C), % 0.3 to 0.5
0
Chromium (Cr), % 18 to 21
0
Cobalt (Co), % 0
0.25 to 0.55
Copper (Cu), % 0
70.8 to 75.5
Iron (Fe), % 34.4 to 44.7
0 to 0.2
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 36 to 39
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 1.0 to 2.5
0
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
21.3 to 24.1
Residuals, % 0
0 to 0.5