MakeItFrom.com
Menu (ESC)

EN 1.4865 Stainless Steel vs. C85400 Brass

EN 1.4865 stainless steel belongs to the iron alloys classification, while C85400 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.4865 stainless steel and the bottom bar is C85400 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 140
55
Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 6.8
23
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 76
40
Tensile Strength: Ultimate (UTS), MPa 470
220
Tensile Strength: Yield (Proof), MPa 250
85

Thermal Properties

Latent Heat of Fusion, J/g 320
180
Maximum Temperature: Mechanical, °C 1020
130
Melting Completion (Liquidus), °C 1380
940
Melting Onset (Solidus), °C 1330
940
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 12
89
Thermal Expansion, µm/m-K 15
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
20
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
22

Otherwise Unclassified Properties

Base Metal Price, % relative 33
25
Density, g/cm3 8.0
8.3
Embodied Carbon, kg CO2/kg material 5.8
2.8
Embodied Energy, MJ/kg 81
46
Embodied Water, L/kg 200
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 27
40
Resilience: Unit (Modulus of Resilience), kJ/m3 160
35
Stiffness to Weight: Axial, points 14
7.0
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 16
7.5
Strength to Weight: Bending, points 17
9.9
Thermal Diffusivity, mm2/s 3.1
28
Thermal Shock Resistance, points 11
7.6

Alloy Composition

Aluminum (Al), % 0
0 to 0.35
Carbon (C), % 0.3 to 0.5
0
Chromium (Cr), % 18 to 21
0
Copper (Cu), % 0
65 to 70
Iron (Fe), % 34.4 to 44.7
0 to 0.7
Lead (Pb), % 0
1.5 to 3.8
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 36 to 39
0 to 1.0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 1.0 to 2.5
0 to 0.050
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0.5 to 1.5
Zinc (Zn), % 0
24 to 32
Residuals, % 0
0 to 1.1