MakeItFrom.com
Menu (ESC)

EN 1.4865 Stainless Steel vs. C96200 Copper-nickel

EN 1.4865 stainless steel belongs to the iron alloys classification, while C96200 copper-nickel belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4865 stainless steel and the bottom bar is C96200 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 6.8
23
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
46
Tensile Strength: Ultimate (UTS), MPa 470
350
Tensile Strength: Yield (Proof), MPa 250
190

Thermal Properties

Latent Heat of Fusion, J/g 320
220
Maximum Temperature: Mechanical, °C 1020
220
Melting Completion (Liquidus), °C 1380
1150
Melting Onset (Solidus), °C 1330
1100
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 12
45
Thermal Expansion, µm/m-K 15
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
11
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
11

Otherwise Unclassified Properties

Base Metal Price, % relative 33
36
Density, g/cm3 8.0
8.9
Embodied Carbon, kg CO2/kg material 5.8
3.8
Embodied Energy, MJ/kg 81
58
Embodied Water, L/kg 200
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 27
68
Resilience: Unit (Modulus of Resilience), kJ/m3 160
150
Stiffness to Weight: Axial, points 14
7.8
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 16
11
Strength to Weight: Bending, points 17
13
Thermal Diffusivity, mm2/s 3.1
13
Thermal Shock Resistance, points 11
12

Alloy Composition

Carbon (C), % 0.3 to 0.5
0 to 0.1
Chromium (Cr), % 18 to 21
0
Copper (Cu), % 0
83.6 to 90
Iron (Fe), % 34.4 to 44.7
1.0 to 1.8
Lead (Pb), % 0
0 to 0.010
Manganese (Mn), % 0 to 2.0
0 to 1.5
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 36 to 39
9.0 to 11
Niobium (Nb), % 0
0 to 1.0
Phosphorus (P), % 0 to 0.040
0 to 0.020
Silicon (Si), % 1.0 to 2.5
0 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.020
Residuals, % 0
0 to 0.5