MakeItFrom.com
Menu (ESC)

EN 1.4865 Stainless Steel vs. S35140 Stainless Steel

Both EN 1.4865 stainless steel and S35140 stainless steel are iron alloys. They have 87% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.4865 stainless steel and the bottom bar is S35140 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 140
210
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 6.8
34
Fatigue Strength, MPa 120
250
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
78
Tensile Strength: Ultimate (UTS), MPa 470
690
Tensile Strength: Yield (Proof), MPa 250
310

Thermal Properties

Latent Heat of Fusion, J/g 320
300
Maximum Temperature: Corrosion, °C 410
500
Maximum Temperature: Mechanical, °C 1020
1100
Melting Completion (Liquidus), °C 1380
1420
Melting Onset (Solidus), °C 1330
1370
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 12
14
Thermal Expansion, µm/m-K 15
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 33
31
Density, g/cm3 8.0
8.0
Embodied Carbon, kg CO2/kg material 5.8
5.5
Embodied Energy, MJ/kg 81
78
Embodied Water, L/kg 200
190

Common Calculations

PREN (Pitting Resistance) 20
28
Resilience: Ultimate (Unit Rupture Work), MJ/m3 27
190
Resilience: Unit (Modulus of Resilience), kJ/m3 160
250
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 16
24
Strength to Weight: Bending, points 17
22
Thermal Diffusivity, mm2/s 3.1
3.7
Thermal Shock Resistance, points 11
16

Alloy Composition

Carbon (C), % 0.3 to 0.5
0 to 0.1
Chromium (Cr), % 18 to 21
20 to 22
Iron (Fe), % 34.4 to 44.7
44.1 to 52.7
Manganese (Mn), % 0 to 2.0
1.0 to 3.0
Molybdenum (Mo), % 0 to 0.5
1.0 to 2.0
Nickel (Ni), % 36 to 39
25 to 27
Niobium (Nb), % 0
0.25 to 0.75
Nitrogen (N), % 0
0.080 to 0.2
Phosphorus (P), % 0 to 0.040
0 to 0.045
Silicon (Si), % 1.0 to 2.5
0 to 0.75
Sulfur (S), % 0 to 0.030
0 to 0.030