MakeItFrom.com
Menu (ESC)

EN 1.4903 Stainless Steel vs. ASTM A182 Grade F36

Both EN 1.4903 stainless steel and ASTM A182 grade F36 are iron alloys. They have a moderately high 91% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4903 stainless steel and the bottom bar is ASTM A182 grade F36.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 20 to 21
17
Fatigue Strength, MPa 320 to 330
330
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 75
73
Shear Strength, MPa 420
440
Tensile Strength: Ultimate (UTS), MPa 670 to 680
710
Tensile Strength: Yield (Proof), MPa 500
490

Thermal Properties

Latent Heat of Fusion, J/g 270
250
Maximum Temperature: Mechanical, °C 650
410
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 26
39
Thermal Expansion, µm/m-K 11
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.4
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 4.0
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
3.4
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 2.6
1.7
Embodied Energy, MJ/kg 36
22
Embodied Water, L/kg 88
53

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120 to 130
110
Resilience: Unit (Modulus of Resilience), kJ/m3 650
650
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 24
25
Strength to Weight: Bending, points 22
22
Thermal Diffusivity, mm2/s 7.0
10
Thermal Shock Resistance, points 23
21

Alloy Composition

Aluminum (Al), % 0 to 0.040
0 to 0.050
Carbon (C), % 0.080 to 0.12
0.1 to 0.17
Chromium (Cr), % 8.0 to 9.5
0 to 0.3
Copper (Cu), % 0 to 0.3
0.5 to 0.8
Iron (Fe), % 87.1 to 90.5
95 to 97.1
Manganese (Mn), % 0.3 to 0.6
0.8 to 1.2
Molybdenum (Mo), % 0.85 to 1.1
0.25 to 0.5
Nickel (Ni), % 0 to 0.4
1.0 to 1.3
Niobium (Nb), % 0.060 to 0.1
0.015 to 0.045
Nitrogen (N), % 0.030 to 0.070
0 to 0.020
Phosphorus (P), % 0 to 0.025
0 to 0.030
Silicon (Si), % 0 to 0.5
0.25 to 0.5
Sulfur (S), % 0 to 0.015
0 to 0.025
Vanadium (V), % 0.18 to 0.25
0 to 0.020