MakeItFrom.com
Menu (ESC)

EN 1.4911 Stainless Steel vs. C11400 Copper

EN 1.4911 stainless steel belongs to the iron alloys classification, while C11400 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.4911 stainless steel and the bottom bar is C11400 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 11
2.8 to 51
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
43
Shear Strength, MPa 640
150 to 210
Tensile Strength: Ultimate (UTS), MPa 1070
220 to 400
Tensile Strength: Yield (Proof), MPa 970
75 to 400

Thermal Properties

Latent Heat of Fusion, J/g 270
210
Maximum Temperature: Mechanical, °C 700
200
Melting Completion (Liquidus), °C 1450
1080
Melting Onset (Solidus), °C 1410
1030
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 20
390
Thermal Expansion, µm/m-K 11
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.7
100
Electrical Conductivity: Equal Weight (Specific), % IACS 3.0
100

Otherwise Unclassified Properties

Base Metal Price, % relative 20
32
Density, g/cm3 7.9
9.0
Embodied Carbon, kg CO2/kg material 3.4
2.6
Embodied Energy, MJ/kg 49
42
Embodied Water, L/kg 130
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
11 to 90
Resilience: Unit (Modulus of Resilience), kJ/m3 2410
24 to 680
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 38
6.8 to 12
Strength to Weight: Bending, points 30
9.1 to 14
Thermal Diffusivity, mm2/s 5.4
110
Thermal Shock Resistance, points 37
7.8 to 14

Alloy Composition

Boron (B), % 0.0050 to 0.015
0
Carbon (C), % 0.050 to 0.12
0
Chromium (Cr), % 9.8 to 11.2
0
Cobalt (Co), % 5.0 to 7.0
0
Copper (Cu), % 0
99.84 to 99.966
Iron (Fe), % 75.7 to 83.8
0
Manganese (Mn), % 0.3 to 1.3
0
Molybdenum (Mo), % 0.5 to 1.0
0
Nickel (Ni), % 0.2 to 1.2
0
Niobium (Nb), % 0.2 to 0.5
0
Nitrogen (N), % 0 to 0.035
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0.1 to 0.8
0
Silver (Ag), % 0
0.034 to 0.060
Sulfur (S), % 0 to 0.015
0
Tungsten (W), % 0 to 0.7
0
Vanadium (V), % 0.1 to 0.4
0
Residuals, % 0
0 to 0.1