MakeItFrom.com
Menu (ESC)

EN 1.4931 Steel vs. C12500 Copper

EN 1.4931 steel belongs to the iron alloys classification, while C12500 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.4931 steel and the bottom bar is C12500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 17
1.5 to 50
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
43
Tensile Strength: Ultimate (UTS), MPa 810
220 to 420
Tensile Strength: Yield (Proof), MPa 620
75 to 390

Thermal Properties

Latent Heat of Fusion, J/g 270
210
Maximum Temperature: Mechanical, °C 600
200
Melting Completion (Liquidus), °C 1460
1080
Melting Onset (Solidus), °C 1420
1070
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 24
350
Thermal Expansion, µm/m-K 14
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.8
92
Electrical Conductivity: Equal Weight (Specific), % IACS 11
93

Otherwise Unclassified Properties

Base Metal Price, % relative 8.5
31
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 2.9
2.6
Embodied Energy, MJ/kg 42
41
Embodied Water, L/kg 100
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
5.6 to 88
Resilience: Unit (Modulus of Resilience), kJ/m3 970
24 to 660
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 29
6.9 to 13
Strength to Weight: Bending, points 25
9.1 to 14
Thermal Diffusivity, mm2/s 6.5
100
Thermal Shock Resistance, points 22
7.8 to 15

Alloy Composition

Antimony (Sb), % 0
0 to 0.0030
Arsenic (As), % 0
0 to 0.012
Bismuth (Bi), % 0
0 to 0.0030
Carbon (C), % 0.2 to 0.26
0
Chromium (Cr), % 11.3 to 12.2
0
Copper (Cu), % 0
99.88 to 100
Iron (Fe), % 83.2 to 86.8
0
Lead (Pb), % 0
0 to 0.0040
Manganese (Mn), % 0.5 to 0.8
0
Molybdenum (Mo), % 1.0 to 1.2
0
Nickel (Ni), % 0 to 1.0
0 to 0.050
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.4
0
Sulfur (S), % 0 to 0.020
0
Tellurium (Te), % 0
0 to 0.025
Tungsten (W), % 0 to 0.5
0
Vanadium (V), % 0.25 to 0.35
0
Residuals, % 0
0 to 0.3