MakeItFrom.com
Menu (ESC)

EN 1.4935 Stainless Steel vs. 6060 Aluminum

EN 1.4935 stainless steel belongs to the iron alloys classification, while 6060 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4935 stainless steel and the bottom bar is 6060 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
68
Elongation at Break, % 16 to 18
9.0 to 16
Fatigue Strength, MPa 350 to 400
37 to 70
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
26
Shear Strength, MPa 480 to 540
86 to 130
Tensile Strength: Ultimate (UTS), MPa 780 to 880
140 to 220
Tensile Strength: Yield (Proof), MPa 570 to 670
71 to 170

Thermal Properties

Latent Heat of Fusion, J/g 270
400
Maximum Temperature: Mechanical, °C 740
160
Melting Completion (Liquidus), °C 1460
660
Melting Onset (Solidus), °C 1420
610
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 24
210
Thermal Expansion, µm/m-K 11
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
54
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
180

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
9.5
Density, g/cm3 7.8
2.7
Embodied Carbon, kg CO2/kg material 2.9
8.3
Embodied Energy, MJ/kg 42
150
Embodied Water, L/kg 100
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
13 to 24
Resilience: Unit (Modulus of Resilience), kJ/m3 830 to 1160
37 to 210
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 28 to 31
14 to 23
Strength to Weight: Bending, points 24 to 26
22 to 30
Thermal Diffusivity, mm2/s 6.5
85
Thermal Shock Resistance, points 27 to 30
6.3 to 9.9

Alloy Composition

Aluminum (Al), % 0
97.9 to 99.3
Carbon (C), % 0.17 to 0.24
0
Chromium (Cr), % 11 to 12.5
0 to 0.050
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 83 to 86.7
0.1 to 0.3
Magnesium (Mg), % 0
0.35 to 0.6
Manganese (Mn), % 0.3 to 0.8
0 to 0.1
Molybdenum (Mo), % 0.8 to 1.2
0
Nickel (Ni), % 0.3 to 0.8
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0.1 to 0.5
0.3 to 0.6
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
0 to 0.1
Tungsten (W), % 0.4 to 0.6
0
Vanadium (V), % 0.2 to 0.35
0
Zinc (Zn), % 0
0 to 0.15
Residuals, % 0
0 to 0.15

Comparable Variants