MakeItFrom.com
Menu (ESC)

EN 1.4935 Stainless Steel vs. AWS E80C-B6

Both EN 1.4935 stainless steel and AWS E80C-B6 are iron alloys. They have a moderately high 92% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4935 stainless steel and the bottom bar is AWS E80C-B6.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 16 to 18
19
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 76
74
Tensile Strength: Ultimate (UTS), MPa 780 to 880
630
Tensile Strength: Yield (Proof), MPa 570 to 670
530

Thermal Properties

Latent Heat of Fusion, J/g 270
260
Melting Completion (Liquidus), °C 1460
1450
Melting Onset (Solidus), °C 1420
1410
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 24
39
Thermal Expansion, µm/m-K 11
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
8.2
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
9.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
4.7
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 2.9
1.8
Embodied Energy, MJ/kg 42
25
Embodied Water, L/kg 100
71

Common Calculations

PREN (Pitting Resistance) 16
7.1
Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
120
Resilience: Unit (Modulus of Resilience), kJ/m3 830 to 1160
730
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 28 to 31
22
Strength to Weight: Bending, points 24 to 26
21
Thermal Diffusivity, mm2/s 6.5
11
Thermal Shock Resistance, points 27 to 30
18

Alloy Composition

Carbon (C), % 0.17 to 0.24
0 to 0.1
Chromium (Cr), % 11 to 12.5
4.5 to 6.0
Copper (Cu), % 0
0 to 0.35
Iron (Fe), % 83 to 86.7
90.1 to 94.4
Manganese (Mn), % 0.3 to 0.8
0.4 to 1.0
Molybdenum (Mo), % 0.8 to 1.2
0.45 to 0.65
Nickel (Ni), % 0.3 to 0.8
0 to 0.6
Phosphorus (P), % 0 to 0.025
0 to 0.025
Silicon (Si), % 0.1 to 0.5
0.25 to 0.6
Sulfur (S), % 0 to 0.015
0 to 0.025
Tungsten (W), % 0.4 to 0.6
0
Vanadium (V), % 0.2 to 0.35
0 to 0.030
Residuals, % 0
0 to 0.5