MakeItFrom.com
Menu (ESC)

EN 1.4935 Stainless Steel vs. EN 1.8527 Steel

Both EN 1.4935 stainless steel and EN 1.8527 steel are iron alloys. They have a moderately high 90% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.4935 stainless steel and the bottom bar is EN 1.8527 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 16 to 18
16
Fatigue Strength, MPa 350 to 400
520
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 76
74
Shear Strength, MPa 480 to 540
550
Tensile Strength: Ultimate (UTS), MPa 780 to 880
900
Tensile Strength: Yield (Proof), MPa 570 to 670
800

Thermal Properties

Latent Heat of Fusion, J/g 270
260
Maximum Temperature: Mechanical, °C 740
490
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 24
41
Thermal Expansion, µm/m-K 11
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
9.0

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
4.0
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 2.9
1.7
Embodied Energy, MJ/kg 42
23
Embodied Water, L/kg 100
66

Common Calculations

PREN (Pitting Resistance) 16
5.7
Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
140
Resilience: Unit (Modulus of Resilience), kJ/m3 830 to 1160
1670
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 28 to 31
32
Strength to Weight: Bending, points 24 to 26
26
Thermal Diffusivity, mm2/s 6.5
11
Thermal Shock Resistance, points 27 to 30
26

Alloy Composition

Carbon (C), % 0.17 to 0.24
0.040 to 0.12
Chromium (Cr), % 11 to 12.5
3.7 to 4.3
Copper (Cu), % 0
0 to 0.25
Iron (Fe), % 83 to 86.7
93.2 to 95.1
Manganese (Mn), % 0.3 to 0.8
0.85 to 1.2
Molybdenum (Mo), % 0.8 to 1.2
0.4 to 0.6
Nickel (Ni), % 0.3 to 0.8
0
Phosphorus (P), % 0 to 0.025
0 to 0.025
Silicon (Si), % 0.1 to 0.5
0 to 0.4
Sulfur (S), % 0 to 0.015
0 to 0.035
Tungsten (W), % 0.4 to 0.6
0
Vanadium (V), % 0.2 to 0.35
0