MakeItFrom.com
Menu (ESC)

EN 1.4935 Stainless Steel vs. CC330G Bronze

EN 1.4935 stainless steel belongs to the iron alloys classification, while CC330G bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4935 stainless steel and the bottom bar is CC330G bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 16 to 18
20
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
42
Tensile Strength: Ultimate (UTS), MPa 780 to 880
530
Tensile Strength: Yield (Proof), MPa 570 to 670
190

Thermal Properties

Latent Heat of Fusion, J/g 270
230
Maximum Temperature: Mechanical, °C 740
220
Melting Completion (Liquidus), °C 1460
1050
Melting Onset (Solidus), °C 1420
1000
Specific Heat Capacity, J/kg-K 470
430
Thermal Conductivity, W/m-K 24
62
Thermal Expansion, µm/m-K 11
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
14
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
15

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
29
Density, g/cm3 7.8
8.4
Embodied Carbon, kg CO2/kg material 2.9
3.2
Embodied Energy, MJ/kg 42
52
Embodied Water, L/kg 100
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
82
Resilience: Unit (Modulus of Resilience), kJ/m3 830 to 1160
170
Stiffness to Weight: Axial, points 14
7.5
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 28 to 31
18
Strength to Weight: Bending, points 24 to 26
17
Thermal Diffusivity, mm2/s 6.5
17
Thermal Shock Resistance, points 27 to 30
19

Alloy Composition

Aluminum (Al), % 0
8.0 to 10.5
Carbon (C), % 0.17 to 0.24
0
Chromium (Cr), % 11 to 12.5
0
Copper (Cu), % 0
87 to 92
Iron (Fe), % 83 to 86.7
0 to 1.2
Lead (Pb), % 0
0 to 0.3
Manganese (Mn), % 0.3 to 0.8
0 to 0.5
Molybdenum (Mo), % 0.8 to 1.2
0
Nickel (Ni), % 0.3 to 0.8
0 to 1.0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0.1 to 0.5
0 to 0.2
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.3
Tungsten (W), % 0.4 to 0.6
0
Vanadium (V), % 0.2 to 0.35
0
Zinc (Zn), % 0
0 to 0.5