MakeItFrom.com
Menu (ESC)

EN 1.4935 Stainless Steel vs. C19700 Copper

EN 1.4935 stainless steel belongs to the iron alloys classification, while C19700 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4935 stainless steel and the bottom bar is C19700 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 16 to 18
2.4 to 13
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
43
Shear Strength, MPa 480 to 540
240 to 300
Tensile Strength: Ultimate (UTS), MPa 780 to 880
400 to 530
Tensile Strength: Yield (Proof), MPa 570 to 670
330 to 520

Thermal Properties

Latent Heat of Fusion, J/g 270
210
Maximum Temperature: Mechanical, °C 740
200
Melting Completion (Liquidus), °C 1460
1090
Melting Onset (Solidus), °C 1420
1040
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 24
250
Thermal Expansion, µm/m-K 11
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
86 to 88
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
87 to 89

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
30
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 2.9
2.6
Embodied Energy, MJ/kg 42
41
Embodied Water, L/kg 100
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
12 to 49
Resilience: Unit (Modulus of Resilience), kJ/m3 830 to 1160
460 to 1160
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 28 to 31
12 to 16
Strength to Weight: Bending, points 24 to 26
14 to 16
Thermal Diffusivity, mm2/s 6.5
73
Thermal Shock Resistance, points 27 to 30
14 to 19

Alloy Composition

Carbon (C), % 0.17 to 0.24
0
Chromium (Cr), % 11 to 12.5
0
Cobalt (Co), % 0
0 to 0.050
Copper (Cu), % 0
97.4 to 99.59
Iron (Fe), % 83 to 86.7
0.3 to 1.2
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0
0.010 to 0.2
Manganese (Mn), % 0.3 to 0.8
0 to 0.050
Molybdenum (Mo), % 0.8 to 1.2
0
Nickel (Ni), % 0.3 to 0.8
0 to 0.050
Phosphorus (P), % 0 to 0.025
0.1 to 0.4
Silicon (Si), % 0.1 to 0.5
0
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.2
Tungsten (W), % 0.4 to 0.6
0
Vanadium (V), % 0.2 to 0.35
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.2

Comparable Variants