EN 1.4935 Stainless Steel vs. C27200 Brass
EN 1.4935 stainless steel belongs to the iron alloys classification, while C27200 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.
For each property being compared, the top bar is EN 1.4935 stainless steel and the bottom bar is C27200 brass.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 200 | |
110 |
Elongation at Break, % | 16 to 18 | |
10 to 50 |
Poisson's Ratio | 0.28 | |
0.31 |
Shear Modulus, GPa | 76 | |
40 |
Shear Strength, MPa | 480 to 540 | |
230 to 320 |
Tensile Strength: Ultimate (UTS), MPa | 780 to 880 | |
370 to 590 |
Tensile Strength: Yield (Proof), MPa | 570 to 670 | |
150 to 410 |
Thermal Properties
Latent Heat of Fusion, J/g | 270 | |
170 |
Maximum Temperature: Mechanical, °C | 740 | |
130 |
Melting Completion (Liquidus), °C | 1460 | |
920 |
Melting Onset (Solidus), °C | 1420 | |
870 |
Specific Heat Capacity, J/kg-K | 470 | |
390 |
Thermal Conductivity, W/m-K | 24 | |
120 |
Thermal Expansion, µm/m-K | 11 | |
20 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 2.9 | |
28 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 3.3 | |
31 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 9.0 | |
24 |
Density, g/cm3 | 7.8 | |
8.1 |
Embodied Carbon, kg CO2/kg material | 2.9 | |
2.7 |
Embodied Energy, MJ/kg | 42 | |
45 |
Embodied Water, L/kg | 100 | |
320 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 130 | |
30 to 270 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 830 to 1160 | |
110 to 810 |
Stiffness to Weight: Axial, points | 14 | |
7.2 |
Stiffness to Weight: Bending, points | 25 | |
19 |
Strength to Weight: Axial, points | 28 to 31 | |
13 to 20 |
Strength to Weight: Bending, points | 24 to 26 | |
14 to 19 |
Thermal Diffusivity, mm2/s | 6.5 | |
37 |
Thermal Shock Resistance, points | 27 to 30 | |
12 to 20 |
Alloy Composition
Carbon (C), % | 0.17 to 0.24 | |
0 |
Chromium (Cr), % | 11 to 12.5 | |
0 |
Copper (Cu), % | 0 | |
62 to 65 |
Iron (Fe), % | 83 to 86.7 | |
0 to 0.070 |
Lead (Pb), % | 0 | |
0 to 0.070 |
Manganese (Mn), % | 0.3 to 0.8 | |
0 |
Molybdenum (Mo), % | 0.8 to 1.2 | |
0 |
Nickel (Ni), % | 0.3 to 0.8 | |
0 |
Phosphorus (P), % | 0 to 0.025 | |
0 |
Silicon (Si), % | 0.1 to 0.5 | |
0 |
Sulfur (S), % | 0 to 0.015 | |
0 |
Tungsten (W), % | 0.4 to 0.6 | |
0 |
Vanadium (V), % | 0.2 to 0.35 | |
0 |
Zinc (Zn), % | 0 | |
34.6 to 38 |
Residuals, % | 0 | |
0 to 0.3 |