MakeItFrom.com
Menu (ESC)

EN 1.4935 Stainless Steel vs. C34500 Brass

EN 1.4935 stainless steel belongs to the iron alloys classification, while C34500 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.4935 stainless steel and the bottom bar is C34500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 16 to 18
12 to 28
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 76
40
Shear Strength, MPa 480 to 540
220 to 260
Tensile Strength: Ultimate (UTS), MPa 780 to 880
340 to 430
Tensile Strength: Yield (Proof), MPa 570 to 670
120 to 180

Thermal Properties

Latent Heat of Fusion, J/g 270
170
Maximum Temperature: Mechanical, °C 740
120
Melting Completion (Liquidus), °C 1460
910
Melting Onset (Solidus), °C 1420
890
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 24
120
Thermal Expansion, µm/m-K 11
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
26
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
29

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
24
Density, g/cm3 7.8
8.2
Embodied Carbon, kg CO2/kg material 2.9
2.6
Embodied Energy, MJ/kg 42
45
Embodied Water, L/kg 100
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
42 to 75
Resilience: Unit (Modulus of Resilience), kJ/m3 830 to 1160
69 to 160
Stiffness to Weight: Axial, points 14
7.1
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 28 to 31
12 to 15
Strength to Weight: Bending, points 24 to 26
13 to 16
Thermal Diffusivity, mm2/s 6.5
37
Thermal Shock Resistance, points 27 to 30
11 to 14

Alloy Composition

Carbon (C), % 0.17 to 0.24
0
Chromium (Cr), % 11 to 12.5
0
Copper (Cu), % 0
62 to 65
Iron (Fe), % 83 to 86.7
0 to 0.15
Lead (Pb), % 0
1.5 to 2.5
Manganese (Mn), % 0.3 to 0.8
0
Molybdenum (Mo), % 0.8 to 1.2
0
Nickel (Ni), % 0.3 to 0.8
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0.1 to 0.5
0
Sulfur (S), % 0 to 0.015
0
Tungsten (W), % 0.4 to 0.6
0
Vanadium (V), % 0.2 to 0.35
0
Zinc (Zn), % 0
32 to 36.5
Residuals, % 0
0 to 0.4

Comparable Variants