MakeItFrom.com
Menu (ESC)

EN 1.4935 Stainless Steel vs. C37100 Brass

EN 1.4935 stainless steel belongs to the iron alloys classification, while C37100 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4935 stainless steel and the bottom bar is C37100 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 16 to 18
8.0 to 40
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 76
40
Shear Strength, MPa 480 to 540
260 to 300
Tensile Strength: Ultimate (UTS), MPa 780 to 880
370 to 520
Tensile Strength: Yield (Proof), MPa 570 to 670
150 to 390

Thermal Properties

Latent Heat of Fusion, J/g 270
170
Maximum Temperature: Mechanical, °C 740
120
Melting Completion (Liquidus), °C 1460
900
Melting Onset (Solidus), °C 1420
890
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 24
120
Thermal Expansion, µm/m-K 11
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
27
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
30

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
23
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 2.9
2.7
Embodied Energy, MJ/kg 42
45
Embodied Water, L/kg 100
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
38 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 830 to 1160
110 to 750
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 28 to 31
13 to 18
Strength to Weight: Bending, points 24 to 26
14 to 18
Thermal Diffusivity, mm2/s 6.5
39
Thermal Shock Resistance, points 27 to 30
12 to 17

Alloy Composition

Carbon (C), % 0.17 to 0.24
0
Chromium (Cr), % 11 to 12.5
0
Copper (Cu), % 0
58 to 62
Iron (Fe), % 83 to 86.7
0 to 0.15
Lead (Pb), % 0
0.6 to 1.2
Manganese (Mn), % 0.3 to 0.8
0
Molybdenum (Mo), % 0.8 to 1.2
0
Nickel (Ni), % 0.3 to 0.8
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0.1 to 0.5
0
Sulfur (S), % 0 to 0.015
0
Tungsten (W), % 0.4 to 0.6
0
Vanadium (V), % 0.2 to 0.35
0
Zinc (Zn), % 0
36.3 to 41.4
Residuals, % 0
0 to 0.4

Comparable Variants