MakeItFrom.com
Menu (ESC)

EN 1.4935 Stainless Steel vs. C42500 Brass

EN 1.4935 stainless steel belongs to the iron alloys classification, while C42500 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4935 stainless steel and the bottom bar is C42500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 16 to 18
2.0 to 49
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
42
Shear Strength, MPa 480 to 540
220 to 360
Tensile Strength: Ultimate (UTS), MPa 780 to 880
310 to 630
Tensile Strength: Yield (Proof), MPa 570 to 670
120 to 590

Thermal Properties

Latent Heat of Fusion, J/g 270
200
Maximum Temperature: Mechanical, °C 740
180
Melting Completion (Liquidus), °C 1460
1030
Melting Onset (Solidus), °C 1420
1010
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 24
120
Thermal Expansion, µm/m-K 11
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
28
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
29

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
30
Density, g/cm3 7.8
8.7
Embodied Carbon, kg CO2/kg material 2.9
2.8
Embodied Energy, MJ/kg 42
46
Embodied Water, L/kg 100
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
12 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 830 to 1160
64 to 1570
Stiffness to Weight: Axial, points 14
7.1
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 28 to 31
9.9 to 20
Strength to Weight: Bending, points 24 to 26
12 to 19
Thermal Diffusivity, mm2/s 6.5
36
Thermal Shock Resistance, points 27 to 30
11 to 22

Alloy Composition

Carbon (C), % 0.17 to 0.24
0
Chromium (Cr), % 11 to 12.5
0
Copper (Cu), % 0
87 to 90
Iron (Fe), % 83 to 86.7
0 to 0.050
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0.3 to 0.8
0
Molybdenum (Mo), % 0.8 to 1.2
0
Nickel (Ni), % 0.3 to 0.8
0
Phosphorus (P), % 0 to 0.025
0 to 0.35
Silicon (Si), % 0.1 to 0.5
0
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
1.5 to 3.0
Tungsten (W), % 0.4 to 0.6
0
Vanadium (V), % 0.2 to 0.35
0
Zinc (Zn), % 0
6.1 to 11.5
Residuals, % 0
0 to 0.5

Comparable Variants