MakeItFrom.com
Menu (ESC)

EN 1.4935 Stainless Steel vs. C49300 Brass

EN 1.4935 stainless steel belongs to the iron alloys classification, while C49300 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.4935 stainless steel and the bottom bar is C49300 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 16 to 18
4.5 to 20
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 76
40
Shear Strength, MPa 480 to 540
270 to 290
Tensile Strength: Ultimate (UTS), MPa 780 to 880
430 to 520
Tensile Strength: Yield (Proof), MPa 570 to 670
210 to 410

Thermal Properties

Latent Heat of Fusion, J/g 270
170
Maximum Temperature: Mechanical, °C 740
120
Melting Completion (Liquidus), °C 1460
880
Melting Onset (Solidus), °C 1420
840
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 24
88
Thermal Expansion, µm/m-K 11
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
15
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
17

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
26
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 2.9
3.0
Embodied Energy, MJ/kg 42
50
Embodied Water, L/kg 100
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
21 to 71
Resilience: Unit (Modulus of Resilience), kJ/m3 830 to 1160
220 to 800
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 28 to 31
15 to 18
Strength to Weight: Bending, points 24 to 26
16 to 18
Thermal Diffusivity, mm2/s 6.5
29
Thermal Shock Resistance, points 27 to 30
14 to 18

Alloy Composition

Aluminum (Al), % 0
0 to 0.5
Antimony (Sb), % 0
0 to 0.5
Bismuth (Bi), % 0
0.5 to 2.0
Carbon (C), % 0.17 to 0.24
0
Chromium (Cr), % 11 to 12.5
0
Copper (Cu), % 0
58 to 62
Iron (Fe), % 83 to 86.7
0 to 0.1
Lead (Pb), % 0
0 to 0.010
Manganese (Mn), % 0.3 to 0.8
0 to 0.030
Molybdenum (Mo), % 0.8 to 1.2
0
Nickel (Ni), % 0.3 to 0.8
0 to 1.5
Phosphorus (P), % 0 to 0.025
0 to 0.2
Selenium (Se), % 0
0 to 0.2
Silicon (Si), % 0.1 to 0.5
0 to 0.1
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
1.0 to 1.8
Tungsten (W), % 0.4 to 0.6
0
Vanadium (V), % 0.2 to 0.35
0
Zinc (Zn), % 0
30.6 to 40.5
Residuals, % 0
0 to 0.5

Comparable Variants