MakeItFrom.com
Menu (ESC)

EN 1.4935 Stainless Steel vs. C96400 Copper-nickel

EN 1.4935 stainless steel belongs to the iron alloys classification, while C96400 copper-nickel belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4935 stainless steel and the bottom bar is C96400 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
140
Elongation at Break, % 16 to 18
25
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
51
Tensile Strength: Ultimate (UTS), MPa 780 to 880
490
Tensile Strength: Yield (Proof), MPa 570 to 670
260

Thermal Properties

Latent Heat of Fusion, J/g 270
240
Maximum Temperature: Mechanical, °C 740
260
Melting Completion (Liquidus), °C 1460
1240
Melting Onset (Solidus), °C 1420
1170
Specific Heat Capacity, J/kg-K 470
400
Thermal Conductivity, W/m-K 24
28
Thermal Expansion, µm/m-K 11
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
5.0
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
5.1

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
45
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 2.9
5.9
Embodied Energy, MJ/kg 42
87
Embodied Water, L/kg 100
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
100
Resilience: Unit (Modulus of Resilience), kJ/m3 830 to 1160
250
Stiffness to Weight: Axial, points 14
8.6
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 28 to 31
15
Strength to Weight: Bending, points 24 to 26
16
Thermal Diffusivity, mm2/s 6.5
7.8
Thermal Shock Resistance, points 27 to 30
17

Alloy Composition

Carbon (C), % 0.17 to 0.24
0 to 0.15
Chromium (Cr), % 11 to 12.5
0
Copper (Cu), % 0
62.3 to 71.3
Iron (Fe), % 83 to 86.7
0.25 to 1.5
Lead (Pb), % 0
0 to 0.010
Manganese (Mn), % 0.3 to 0.8
0 to 1.5
Molybdenum (Mo), % 0.8 to 1.2
0
Nickel (Ni), % 0.3 to 0.8
28 to 32
Niobium (Nb), % 0
0.5 to 1.5
Phosphorus (P), % 0 to 0.025
0 to 0.020
Silicon (Si), % 0.1 to 0.5
0 to 0.5
Sulfur (S), % 0 to 0.015
0 to 0.020
Tungsten (W), % 0.4 to 0.6
0
Vanadium (V), % 0.2 to 0.35
0
Residuals, % 0
0 to 0.5