MakeItFrom.com
Menu (ESC)

EN 1.4980 Stainless Steel vs. AWS E383

Both EN 1.4980 stainless steel and AWS E383 are iron alloys. They have 77% of their average alloy composition in common. There are 23 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown.

For each property being compared, the top bar is EN 1.4980 stainless steel and the bottom bar is AWS E383.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
210
Elongation at Break, % 17
34
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 75
80
Tensile Strength: Ultimate (UTS), MPa 1030
580

Thermal Properties

Latent Heat of Fusion, J/g 300
320
Melting Completion (Liquidus), °C 1430
1420
Melting Onset (Solidus), °C 1380
1370
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 13
12
Thermal Expansion, µm/m-K 17
14

Otherwise Unclassified Properties

Base Metal Price, % relative 26
37
Density, g/cm3 7.9
8.1
Embodied Carbon, kg CO2/kg material 6.0
6.4
Embodied Energy, MJ/kg 87
89
Embodied Water, L/kg 170
240

Common Calculations

PREN (Pitting Resistance) 19
40
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 36
20
Strength to Weight: Bending, points 28
19
Thermal Diffusivity, mm2/s 3.5
3.1
Thermal Shock Resistance, points 22
15

Alloy Composition

Aluminum (Al), % 0 to 0.35
0
Boron (B), % 0.0030 to 0.010
0
Carbon (C), % 0.030 to 0.080
0 to 0.030
Chromium (Cr), % 13.5 to 16
26.5 to 29
Copper (Cu), % 0
0.6 to 1.5
Iron (Fe), % 49.2 to 58.5
28.8 to 39.2
Manganese (Mn), % 1.0 to 2.0
0.5 to 2.5
Molybdenum (Mo), % 1.0 to 1.5
3.2 to 4.2
Nickel (Ni), % 24 to 27
30 to 33
Phosphorus (P), % 0 to 0.025
0 to 0.020
Silicon (Si), % 0 to 1.0
0 to 0.9
Sulfur (S), % 0 to 0.015
0 to 0.020
Titanium (Ti), % 1.9 to 2.3
0
Vanadium (V), % 0.1 to 0.5
0