MakeItFrom.com
Menu (ESC)

EN 1.4980 Stainless Steel vs. C99400 Brass

EN 1.4980 stainless steel belongs to the iron alloys classification, while C99400 brass belongs to the copper alloys. There are 24 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is EN 1.4980 stainless steel and the bottom bar is C99400 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 75
44
Tensile Strength: Ultimate (UTS), MPa 1030
460 to 550
Tensile Strength: Yield (Proof), MPa 680
230 to 370

Thermal Properties

Latent Heat of Fusion, J/g 300
230
Maximum Temperature: Mechanical, °C 920
200
Melting Completion (Liquidus), °C 1430
1070
Melting Onset (Solidus), °C 1380
1020
Specific Heat Capacity, J/kg-K 470
400
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.9
17
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
17

Otherwise Unclassified Properties

Base Metal Price, % relative 26
30
Density, g/cm3 7.9
8.7
Embodied Carbon, kg CO2/kg material 6.0
2.8
Embodied Energy, MJ/kg 87
45
Embodied Water, L/kg 170
310

Common Calculations

Resilience: Unit (Modulus of Resilience), kJ/m3 1180
230 to 590
Stiffness to Weight: Axial, points 14
7.5
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 36
15 to 17
Strength to Weight: Bending, points 28
15 to 17
Thermal Shock Resistance, points 22
16 to 19

Alloy Composition

Aluminum (Al), % 0 to 0.35
0.5 to 2.0
Boron (B), % 0.0030 to 0.010
0
Carbon (C), % 0.030 to 0.080
0
Chromium (Cr), % 13.5 to 16
0
Copper (Cu), % 0
83.5 to 96.5
Iron (Fe), % 49.2 to 58.5
1.0 to 3.0
Lead (Pb), % 0
0 to 0.25
Manganese (Mn), % 1.0 to 2.0
0 to 0.5
Molybdenum (Mo), % 1.0 to 1.5
0
Nickel (Ni), % 24 to 27
1.0 to 3.5
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 1.0
0.5 to 2.0
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 1.9 to 2.3
0
Vanadium (V), % 0.1 to 0.5
0
Zinc (Zn), % 0
0.5 to 5.0
Residuals, % 0
0 to 0.3