MakeItFrom.com
Menu (ESC)

EN 1.4982 Stainless Steel vs. 380.0 Aluminum

EN 1.4982 stainless steel belongs to the iron alloys classification, while 380.0 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4982 stainless steel and the bottom bar is 380.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 230
80
Elastic (Young's, Tensile) Modulus, GPa 200
74
Elongation at Break, % 28
3.0
Fatigue Strength, MPa 420
140
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
28
Shear Strength, MPa 490
190
Tensile Strength: Ultimate (UTS), MPa 750
320
Tensile Strength: Yield (Proof), MPa 570
160

Thermal Properties

Latent Heat of Fusion, J/g 290
510
Maximum Temperature: Mechanical, °C 860
170
Melting Completion (Liquidus), °C 1430
590
Melting Onset (Solidus), °C 1390
540
Specific Heat Capacity, J/kg-K 470
870
Thermal Conductivity, W/m-K 13
100
Thermal Expansion, µm/m-K 16
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
27
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
83

Otherwise Unclassified Properties

Base Metal Price, % relative 22
10
Density, g/cm3 7.8
2.9
Embodied Carbon, kg CO2/kg material 4.9
7.5
Embodied Energy, MJ/kg 71
140
Embodied Water, L/kg 150
1040

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
8.0
Resilience: Unit (Modulus of Resilience), kJ/m3 830
170
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
48
Strength to Weight: Axial, points 27
31
Strength to Weight: Bending, points 23
36
Thermal Diffusivity, mm2/s 3.4
40
Thermal Shock Resistance, points 17
14

Alloy Composition

Aluminum (Al), % 0
79.6 to 89.5
Boron (B), % 0.0030 to 0.0090
0
Carbon (C), % 0.070 to 0.13
0
Chromium (Cr), % 14 to 16
0
Copper (Cu), % 0
3.0 to 4.0
Iron (Fe), % 61.8 to 69.7
0 to 2.0
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 5.5 to 7.0
0 to 0.5
Molybdenum (Mo), % 0.8 to 1.2
0
Nickel (Ni), % 9.0 to 11
0 to 0.5
Niobium (Nb), % 0.75 to 1.3
0
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
7.5 to 9.5
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.35
Vanadium (V), % 0.15 to 0.4
0
Zinc (Zn), % 0
0 to 3.0
Residuals, % 0
0 to 0.5