MakeItFrom.com
Menu (ESC)

EN 1.4982 Stainless Steel vs. 6005A Aluminum

EN 1.4982 stainless steel belongs to the iron alloys classification, while 6005A aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4982 stainless steel and the bottom bar is 6005A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
69
Elongation at Break, % 28
8.6 to 17
Fatigue Strength, MPa 420
55 to 110
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
26
Shear Strength, MPa 490
120 to 180
Tensile Strength: Ultimate (UTS), MPa 750
190 to 300
Tensile Strength: Yield (Proof), MPa 570
100 to 270

Thermal Properties

Latent Heat of Fusion, J/g 290
410
Maximum Temperature: Mechanical, °C 860
170
Melting Completion (Liquidus), °C 1430
650
Melting Onset (Solidus), °C 1390
600
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 13
180 to 190
Thermal Expansion, µm/m-K 16
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
47 to 50
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
150 to 170

Otherwise Unclassified Properties

Base Metal Price, % relative 22
9.5
Density, g/cm3 7.8
2.7
Embodied Carbon, kg CO2/kg material 4.9
8.3
Embodied Energy, MJ/kg 71
150
Embodied Water, L/kg 150
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
24 to 29
Resilience: Unit (Modulus of Resilience), kJ/m3 830
76 to 530
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 27
20 to 30
Strength to Weight: Bending, points 23
27 to 36
Thermal Diffusivity, mm2/s 3.4
72 to 79
Thermal Shock Resistance, points 17
8.6 to 13

Alloy Composition

Aluminum (Al), % 0
96.5 to 99.1
Boron (B), % 0.0030 to 0.0090
0
Carbon (C), % 0.070 to 0.13
0
Chromium (Cr), % 14 to 16
0 to 0.3
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 61.8 to 69.7
0 to 0.35
Magnesium (Mg), % 0
0.4 to 0.7
Manganese (Mn), % 5.5 to 7.0
0 to 0.5
Molybdenum (Mo), % 0.8 to 1.2
0
Nickel (Ni), % 9.0 to 11
0
Niobium (Nb), % 0.75 to 1.3
0
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0.5 to 0.9
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.1
Vanadium (V), % 0.15 to 0.4
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15