MakeItFrom.com
Menu (ESC)

EN 1.4982 Stainless Steel vs. ASTM A229 Spring Steel

Both EN 1.4982 stainless steel and ASTM A229 spring steel are iron alloys. They have 67% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.4982 stainless steel and the bottom bar is ASTM A229 spring steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 230
490 to 550
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 28
14
Fatigue Strength, MPa 420
710 to 790
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 76
72
Shear Strength, MPa 490
1020 to 1140
Tensile Strength: Ultimate (UTS), MPa 750
1690 to 1890
Tensile Strength: Yield (Proof), MPa 570
1100 to 1230

Thermal Properties

Latent Heat of Fusion, J/g 290
250
Maximum Temperature: Mechanical, °C 860
400
Melting Completion (Liquidus), °C 1430
1450
Melting Onset (Solidus), °C 1390
1410
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 13
50
Thermal Expansion, µm/m-K 16
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 22
1.8
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 4.9
1.4
Embodied Energy, MJ/kg 71
19
Embodied Water, L/kg 150
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
200 to 230
Resilience: Unit (Modulus of Resilience), kJ/m3 830
3260 to 4080
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 27
60 to 67
Strength to Weight: Bending, points 23
40 to 43
Thermal Diffusivity, mm2/s 3.4
14
Thermal Shock Resistance, points 17
54 to 60

Alloy Composition

Boron (B), % 0.0030 to 0.0090
0
Carbon (C), % 0.070 to 0.13
0.55 to 0.85
Chromium (Cr), % 14 to 16
0
Iron (Fe), % 61.8 to 69.7
97.5 to 99
Manganese (Mn), % 5.5 to 7.0
0.3 to 1.2
Molybdenum (Mo), % 0.8 to 1.2
0
Nickel (Ni), % 9.0 to 11
0
Niobium (Nb), % 0.75 to 1.3
0
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0.15 to 0.35
Sulfur (S), % 0 to 0.030
0 to 0.050
Vanadium (V), % 0.15 to 0.4
0