MakeItFrom.com
Menu (ESC)

EN 1.4982 Stainless Steel vs. ASTM A356 Grade 9

Both EN 1.4982 stainless steel and ASTM A356 grade 9 are iron alloys. They have 70% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4982 stainless steel and the bottom bar is ASTM A356 grade 9.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 230
200
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 28
17
Fatigue Strength, MPa 420
310
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 76
73
Tensile Strength: Ultimate (UTS), MPa 750
670
Tensile Strength: Yield (Proof), MPa 570
460

Thermal Properties

Latent Heat of Fusion, J/g 290
260
Maximum Temperature: Mechanical, °C 860
440
Melting Completion (Liquidus), °C 1430
1470
Melting Onset (Solidus), °C 1390
1430
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 13
41
Thermal Expansion, µm/m-K 16
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 22
3.6
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 4.9
2.4
Embodied Energy, MJ/kg 71
33
Embodied Water, L/kg 150
56

Common Calculations

PREN (Pitting Resistance) 19
4.7
Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
100
Resilience: Unit (Modulus of Resilience), kJ/m3 830
570
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 27
24
Strength to Weight: Bending, points 23
22
Thermal Diffusivity, mm2/s 3.4
11
Thermal Shock Resistance, points 17
19

Alloy Composition

Boron (B), % 0.0030 to 0.0090
0
Carbon (C), % 0.070 to 0.13
0 to 0.2
Chromium (Cr), % 14 to 16
1.0 to 1.5
Iron (Fe), % 61.8 to 69.7
95.2 to 97.2
Manganese (Mn), % 5.5 to 7.0
0.5 to 0.9
Molybdenum (Mo), % 0.8 to 1.2
0.9 to 1.2
Nickel (Ni), % 9.0 to 11
0
Niobium (Nb), % 0.75 to 1.3
0
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.040
0 to 0.035
Silicon (Si), % 0 to 1.0
0.2 to 0.6
Sulfur (S), % 0 to 0.030
0 to 0.030
Vanadium (V), % 0.15 to 0.4
0.2 to 0.35