MakeItFrom.com
Menu (ESC)

EN 1.4982 Stainless Steel vs. Nickel 80A

EN 1.4982 stainless steel belongs to the iron alloys classification, while nickel 80A belongs to the nickel alloys. They have a modest 28% of their average alloy composition in common, which, by itself, doesn't mean much. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4982 stainless steel and the bottom bar is nickel 80A.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 28
22
Fatigue Strength, MPa 420
430
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 76
74
Shear Strength, MPa 490
660
Tensile Strength: Ultimate (UTS), MPa 750
1040
Tensile Strength: Yield (Proof), MPa 570
710

Thermal Properties

Latent Heat of Fusion, J/g 290
320
Maximum Temperature: Mechanical, °C 860
980
Melting Completion (Liquidus), °C 1430
1360
Melting Onset (Solidus), °C 1390
1310
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 13
11
Thermal Expansion, µm/m-K 16
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 22
55
Density, g/cm3 7.8
8.3
Embodied Carbon, kg CO2/kg material 4.9
9.8
Embodied Energy, MJ/kg 71
140
Embodied Water, L/kg 150
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
210
Resilience: Unit (Modulus of Resilience), kJ/m3 830
1300
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
23
Strength to Weight: Axial, points 27
35
Strength to Weight: Bending, points 23
27
Thermal Diffusivity, mm2/s 3.4
2.9
Thermal Shock Resistance, points 17
31

Alloy Composition

Aluminum (Al), % 0
0.5 to 1.8
Boron (B), % 0.0030 to 0.0090
0
Carbon (C), % 0.070 to 0.13
0 to 0.1
Chromium (Cr), % 14 to 16
18 to 21
Iron (Fe), % 61.8 to 69.7
0 to 3.0
Manganese (Mn), % 5.5 to 7.0
0 to 1.0
Molybdenum (Mo), % 0.8 to 1.2
0
Nickel (Ni), % 9.0 to 11
69.4 to 79.7
Niobium (Nb), % 0.75 to 1.3
0
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.015
Titanium (Ti), % 0
1.8 to 2.7
Vanadium (V), % 0.15 to 0.4
0