MakeItFrom.com
Menu (ESC)

EN 1.4982 Stainless Steel vs. SAE-AISI 1060 Steel

Both EN 1.4982 stainless steel and SAE-AISI 1060 steel are iron alloys. They have 67% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4982 stainless steel and the bottom bar is SAE-AISI 1060 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 230
180 to 220
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 28
10 to 13
Fatigue Strength, MPa 420
260 to 340
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 76
72
Shear Strength, MPa 490
370 to 450
Tensile Strength: Ultimate (UTS), MPa 750
620 to 740
Tensile Strength: Yield (Proof), MPa 570
400 to 540

Thermal Properties

Latent Heat of Fusion, J/g 290
250
Maximum Temperature: Mechanical, °C 860
400
Melting Completion (Liquidus), °C 1430
1460
Melting Onset (Solidus), °C 1390
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 13
51
Thermal Expansion, µm/m-K 16
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
9.6
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
11

Otherwise Unclassified Properties

Base Metal Price, % relative 22
1.8
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 4.9
1.4
Embodied Energy, MJ/kg 71
19
Embodied Water, L/kg 150
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
58 to 82
Resilience: Unit (Modulus of Resilience), kJ/m3 830
430 to 790
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 27
22 to 26
Strength to Weight: Bending, points 23
21 to 23
Thermal Diffusivity, mm2/s 3.4
14
Thermal Shock Resistance, points 17
20 to 24

Alloy Composition

Boron (B), % 0.0030 to 0.0090
0
Carbon (C), % 0.070 to 0.13
0.55 to 0.65
Chromium (Cr), % 14 to 16
0
Iron (Fe), % 61.8 to 69.7
98.4 to 98.9
Manganese (Mn), % 5.5 to 7.0
0.6 to 0.9
Molybdenum (Mo), % 0.8 to 1.2
0
Nickel (Ni), % 9.0 to 11
0
Niobium (Nb), % 0.75 to 1.3
0
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0 to 0.050
Vanadium (V), % 0.15 to 0.4
0