MakeItFrom.com
Menu (ESC)

EN 1.4982 Stainless Steel vs. C36200 Brass

EN 1.4982 stainless steel belongs to the iron alloys classification, while C36200 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.4982 stainless steel and the bottom bar is C36200 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 28
20 to 53
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 76
39
Shear Strength, MPa 490
210 to 240
Tensile Strength: Ultimate (UTS), MPa 750
340 to 420
Tensile Strength: Yield (Proof), MPa 570
130 to 360

Thermal Properties

Latent Heat of Fusion, J/g 290
170
Maximum Temperature: Mechanical, °C 860
120
Melting Completion (Liquidus), °C 1430
900
Melting Onset (Solidus), °C 1390
890
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 13
120
Thermal Expansion, µm/m-K 16
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
26
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
28

Otherwise Unclassified Properties

Base Metal Price, % relative 22
23
Density, g/cm3 7.8
8.2
Embodied Carbon, kg CO2/kg material 4.9
2.6
Embodied Energy, MJ/kg 71
45
Embodied Water, L/kg 150
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
74 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 830
89 to 630
Stiffness to Weight: Axial, points 14
6.9
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 27
11 to 14
Strength to Weight: Bending, points 23
13 to 15
Thermal Diffusivity, mm2/s 3.4
37
Thermal Shock Resistance, points 17
11 to 14

Alloy Composition

Boron (B), % 0.0030 to 0.0090
0
Carbon (C), % 0.070 to 0.13
0
Chromium (Cr), % 14 to 16
0
Copper (Cu), % 0
60 to 63
Iron (Fe), % 61.8 to 69.7
0 to 0.15
Lead (Pb), % 0
3.5 to 4.5
Manganese (Mn), % 5.5 to 7.0
0
Molybdenum (Mo), % 0.8 to 1.2
0
Nickel (Ni), % 9.0 to 11
0
Niobium (Nb), % 0.75 to 1.3
0
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Vanadium (V), % 0.15 to 0.4
0
Zinc (Zn), % 0
32.4 to 36.5