MakeItFrom.com
Menu (ESC)

EN 1.4982 Stainless Steel vs. S20431 Stainless Steel

Both EN 1.4982 stainless steel and S20431 stainless steel are iron alloys. They have a moderately high 90% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.4982 stainless steel and the bottom bar is S20431 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 230
210
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 28
46
Fatigue Strength, MPa 420
320
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
76
Shear Strength, MPa 490
500
Tensile Strength: Ultimate (UTS), MPa 750
710
Tensile Strength: Yield (Proof), MPa 570
350

Thermal Properties

Latent Heat of Fusion, J/g 290
280
Maximum Temperature: Corrosion, °C 540
410
Maximum Temperature: Mechanical, °C 860
890
Melting Completion (Liquidus), °C 1430
1400
Melting Onset (Solidus), °C 1390
1360
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 13
15
Thermal Expansion, µm/m-K 16
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 22
12
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 4.9
2.5
Embodied Energy, MJ/kg 71
36
Embodied Water, L/kg 150
140

Common Calculations

PREN (Pitting Resistance) 19
20
Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
270
Resilience: Unit (Modulus of Resilience), kJ/m3 830
310
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 27
25
Strength to Weight: Bending, points 23
23
Thermal Diffusivity, mm2/s 3.4
4.0
Thermal Shock Resistance, points 17
15

Alloy Composition

Boron (B), % 0.0030 to 0.0090
0
Carbon (C), % 0.070 to 0.13
0 to 0.12
Chromium (Cr), % 14 to 16
17 to 18
Copper (Cu), % 0
1.5 to 3.5
Iron (Fe), % 61.8 to 69.7
66.1 to 74.4
Manganese (Mn), % 5.5 to 7.0
5.0 to 7.0
Molybdenum (Mo), % 0.8 to 1.2
0
Nickel (Ni), % 9.0 to 11
2.0 to 4.0
Niobium (Nb), % 0.75 to 1.3
0
Nitrogen (N), % 0 to 0.1
0.1 to 0.25
Phosphorus (P), % 0 to 0.040
0 to 0.045
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030
Vanadium (V), % 0.15 to 0.4
0